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What is a compiler?

> A compiler is a program that translates source code into
some kind of executable machine code.

» Mathematically, a mapping from programs written in one
language (C, Java, Python, etc.) to programs written in
another (x86, MIPS, Java Byte-Code, etc.).

» Problem: How can | write a compiler that:

> s correct.
» Produces useful error messages.
» Produces efficient code.
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The Automata Viewpoint

v

A alphabet is a set of symbols. (Ex: ¥ = {a,b})

» Strings are ordered, finite tuples with entries in an alphabet.
(Ex: abaabba)

» Languages are sets of strings. (Ex: {a"b" : n € N})

» Problem: Can | write down instructions that describe how to
recognize when a string s is a member of language S7

» Problem: Can one method of “writing down instructions” be
more powerful than another?
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Who needs this technology?

Anyone who needs to translate to or from a structured language.
» Programming
» LaTeX, Web Browsers
» Computer Algebra Systems (GAP, Matlab, Mathematica)
This talk will help you understand what these tools are doing...
> ...when they succeed in producing output.

> ...when they give you error messages.
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Lexical Analysis

Main idea: Decompose a file (a string of characters) into “atomic”
pieces.
> Recognize reserved words and operators:
» for — FOR_BEGIN
» <=+ LESS_THAN_EQUAL
» Recognize numerical literals: 453 — INT_LIT (453).
> Recognize “spelling” errors:

» 3.14.14 doesn't define a valid floating point number.
» 314!1foo is not a valid variable name in C.
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Example

A line of C code (30 characters with whitespace):
int foo = bar + 453;
becomes a sequence of 7 tokens:

IDENT (int), IDENT(foo), EQUALS, IDENT (bar), PLUS,
INTLIT(453), SEMICOLON
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Deterministic Finite Automatons (DFAs)

DFAs are decorated directed graphs.
» Each edge identified with exactly one letter in the alphabet.
» One “start node,” at least one “end node.”

A string is recognized (or accepted) by a given DFA if it
describes a path from the start node to an end node.



DFA Example

A DFA that recognizes identifiers (variable names) and the if
token.

---» IDENT

z
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DFA Example

Input: if iota

Output: IF, IDENT(iota),
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Syntax Analysis

Problem: Convert a sequence of tokens to a syntax tree.
» The tree encodes the grammatical structure of the program.
» We'll store further information about the program on the tree.

» Syntax trees are very convenient for operating on programs.



Example:

PROGRAM P
VAR i : INTEGER;

BEGIN
i

. 1;

WHILE i < 10 DO
=0+ 1

ENDDO;

WRITE i — 10; WRITELN;
END.
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» We specify syntax with a Context Free Grammar (CFG).

» Programs have a single grammatical structure, regardless of
context.
» English is not context free: “Fruit flies like a banana.”

» Context A: “Fruit” is the subject, “flies” is the verb.
» Context B: “Fruit flies”" is the subject, “like" is the verb.



Example

Tokens:
Y = {while,do, done, true,or,not, :=, ;, (,),x,y,2}
Grammar:

Stats — Stat ; Stats | ¢

Stat — Ident := Exp | while Exp do Stats done
Exp — (Exp or Exp) | (not Exp) | Ident| true
Ident — x | y | z

Example Program:

while (not x) do x := (not x); done; y := Xx;
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Stack Machines

A recipe for creating automatons:
» Take a finite directed graph G.
> Add a data structure.

» Decorate edges of G with symbols of the input alphabet and
operations on the data structure.

For Stack Machines the added data structure is a stack. We
may:

» Push symbols onto the stack.

» Pop symbols off the stack.

> Peek at the top stack symbol.
Notation:

» $: The end of the input string.

» Edges decorated with “x : [PUSH/POP/PEEK] y", where x
and y are tokens.
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Example

A stack machine to recognize {a"b" : n € N}:

a : PUSH a b : POP a

A A B,
a : awb. a'u$. =©

Here, the stack lets us:

» Count up the number of a's.

» Count off the number of b's.



Example

Input: aabb$
Stack:

a : PUSH a b : POP a

PP SIS S
a o aU$. @
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Input: $
Stack:

a : PUSH a b : POP a
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Example

Input:
Stack:

a : PUSH a b : POP a

a : PUSH a (( E b : POP a /( k $:EMPTY‘.
() N/ N/
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Semantic Analysis

We want compilers that...
» ...help us avoid making silly mistakes.
» ...produce the program we expect.
During the semantic analysis step we gather information about:
> Variables
» Scope

» Type — what a variable is supposed to represent.
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Semantic Analysis

This is one of the more “language dependent” parts of a compiler.
Assuming a strongly typed language (like C), we will:
> Build data structures that categorize variables and procedure
calls.
» Traverse the syntax tree:

» Accumulate data from declarations.
» Examine statements, making sure they're well formed.
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Semantic Analysis

Examples of errors:
» Using a variable/procedure without declaring it.

> Using a variable in a way that doesn't agree with it's type
(Ex. adding a string to an int).

» Declaring a variable several times in the same scope, with
different types.

Important: The more you know at compile-time, the more
efficient you can make your machine/byte code.
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Turing Machines

Definition:
» Start with a finite directed graph G.

» Add a data structure — an infinite tape.

> An array that can be “grown” in either direction.

» We can only inspect the array element the read/write head
covers.

» Operations: read cell, write cell, and move read/write head
left/right one cell.

» Decorate edges of G with instructions for:

» The symbol observed on the tape.
> Instructions for what to write to the tape.
» Instructions for which way to move the read/write head.
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Turing Machines

DFA's are strictly weaker than CFG'’s, which are strictly weaker
than Turing Machines.

Compilers Viewpoint:

» A compiler is a “proof” that the input language is no stronger
than the output language.

» Translating from a high-level language directly to a low-level
language is hard.

> Instead, we can pass through a number of intermediate
languages.



Generating Machine Code

Source Code

DFA Lexical Analyzer Lexing Errors
Tokens
A
A
CFGor Ij
Stack Machine Syntax AnalE,—» Syntax Errors
Syntax Tree
A

Semantic Analyzer Semantic Errors

Decorated Syntax Tree

A
Turing Machine Executable Code
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Generating Machine Code

This step is closely tied to the architecture or virtual machine

you
For

>

>

v

v

v

choose to target.
Microprocessors:
Compiler Output: Instructions for the CPU
To perform any calculation, you need to store data in one of
finitely many registers.
Problem: How can we ensure:
» Correctness — no data gets clobbered.
» Speed
Pros: Programs run faster.
Cons:

» An intermediate representation is necessary.
» Your compiler is tied to a particular architecture.



Example

PROGRAM FACTORIAL ;

VAR i : INTEGER;

VAR prod : INTEGER;
BEGIN

i = 1;
prod = 1;

WHILE i <= 10 DO
prod := prod x i;
=1+ 1;

ENDDO;

WRITE prod; WRITELN;
END.



Intermediate Representation Example

© 00 N O U WN -

= s
W N = O

assign
assign
le

joz
mul
assign
add
assign
Jjump
assign
write
writeln
end

vO
vl
v2
v2
v3
vl
vad
vO

vb
v5

vO
10
vl
v3
vO
v4

vl

10

vO



Assembly Language Example (MIPS)

Triple Code

MIPS Assembly

1| assign vO
2 | assign vl

3| le v2

4 | joz v2

1

1

vO

10

10

1i $t0,
swW $t0,
1i $t0,
sw $t0,
1w $t1,
1i $t2,
sle $t0,
sw $t0,
label_3:

1w $t0,

beq $zero,

1
24($sp)
1
28($sp)
24 ($sp)
10

$t1,
40($sp)

40 ($sp)
$to,

$t2

label_10
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Virtual Machines / Interpreters

» Compiler Output: A sequence of bytes to be interpreted as
low-level instructions by another program.
» Pros:
» Easier to produce virtual machine code.

» Easier to implement “high level features” correctly.
» Not tied to a particular architecture.

» Cons: Poor performance (sometimes).
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Many languages use a virtual machine or interpreter rather than
compiling to assembly:

» Examples: Java, Python, Lisp
» Examples: Sage, GAP

» Many interpreters are stack-based. Bytecode running on a
virtual machine looks like:
» A list of instructions.
» An array of memory (for storing variables).
» A stack for performing calculations (in lieu of registers).
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Virtual Machines / Interpreters

Many virtual machines use an operand stack to calculate.

» Instead of operating on registers:

» Push values onto the stack.
» Pop values off, operate on them.
» Push the results onto the stack.

» Similar to Reverse Polish Notation.

Example: 5 * (3 + 2) becomes

Instructions Stack State

push 5 5

push 3 53
push 2 5,3, 2
add 5, (3+2)
mul 5(3+2)



Bytecode Example

[
MHOKO(XJ\IO)O‘I#OO[\)!—\O

[
(62 SN OV)

alloc
push
push
store
push
push
store
push
get
push
le
joz
push
push
get
push

o

10

26

Addr.

Value :

Addr.
Value

WHILE

Value

Addr.

Addr.

Addr.

.

prod
=1

start
=10
prod
prod

i

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

get
mul_i
store
push
push
get
push
add_i
store
jump
push
get
write T
writeln
end

h
)

b

h
h

Addr.
Addr.

Value :

I
-

WHILE end

Addr.

prod
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Open Problems

1. Obfuscation : Given a program P, how can | modify P to
make it difficult for others to steal my trade secrets,
algorithms, etc.?

2. Deobfuscation : Given an obfuscated program P, what can |
learn about the operations of P?

3. Decompilation : Given an executable E, can | generate source
code S that compiles to E?



