Compilers and Automata Theory

Joseph Thomas

University of Arizona
Department of Mathematics

November 14, 2011

What is a compiler?

What is a compiler?

> A compiler is a program that translates source code into
some kind of executable machine code.

What is a compiler?

> A compiler is a program that translates source code into
some kind of executable machine code.

» Mathematically, a mapping from programs written in one
language (C, Java, Python, etc.) to programs written in
another (x86, MIPS, Java Byte-Code, etc.).

What is a compiler?

> A compiler is a program that translates source code into
some kind of executable machine code.

» Mathematically, a mapping from programs written in one
language (C, Java, Python, etc.) to programs written in
another (x86, MIPS, Java Byte-Code, etc.).

» Problem: How can | write a compiler that:

What is a compiler?

> A compiler is a program that translates source code into
some kind of executable machine code.

» Mathematically, a mapping from programs written in one
language (C, Java, Python, etc.) to programs written in
another (x86, MIPS, Java Byte-Code, etc.).

» Problem: How can | write a compiler that:

What is a compiler?

> A compiler is a program that translates source code into
some kind of executable machine code.

» Mathematically, a mapping from programs written in one
language (C, Java, Python, etc.) to programs written in
another (x86, MIPS, Java Byte-Code, etc.).

» Problem: How can | write a compiler that:

> |s correct.

What is a compiler?

> A compiler is a program that translates source code into
some kind of executable machine code.

» Mathematically, a mapping from programs written in one
language (C, Java, Python, etc.) to programs written in
another (x86, MIPS, Java Byte-Code, etc.).

» Problem: How can | write a compiler that:

> |s correct.
» Produces useful error messages.

What is a compiler?

> A compiler is a program that translates source code into
some kind of executable machine code.

» Mathematically, a mapping from programs written in one
language (C, Java, Python, etc.) to programs written in
another (x86, MIPS, Java Byte-Code, etc.).

» Problem: How can | write a compiler that:

> s correct.
» Produces useful error messages.
» Produces efficient code.

The Automata Viewpoint

The Automata Viewpoint

» A alphabet is a set of symbols. (Ex: ¥ = {a,b})

The Automata Viewpoint

» A alphabet is a set of symbols. (Ex: ¥ = {a,b})

» Strings are ordered, finite tuples with entries in an alphabet.
(Ex: abaabba)

The Automata Viewpoint

» A alphabet is a set of symbols. (Ex: ¥ = {a,b})

» Strings are ordered, finite tuples with entries in an alphabet.
(Ex: abaabba)

» Languages are sets of strings. (Ex: {a"b" : n € N})

The Automata Viewpoint

v

A alphabet is a set of symbols. (Ex: ¥ = {a,b})

Strings are ordered, finite tuples with entries in an alphabet.
(Ex: abaabba)

Languages are sets of strings. (Ex: {a"b" : n € N})

v

v

v

Problem: Can | write down instructions that describe how to
recognize when a string s is a member of language S7

The Automata Viewpoint

v

A alphabet is a set of symbols. (Ex: ¥ = {a,b})

» Strings are ordered, finite tuples with entries in an alphabet.
(Ex: abaabba)

» Languages are sets of strings. (Ex: {a"b" : n € N})

» Problem: Can | write down instructions that describe how to
recognize when a string s is a member of language S7

» Problem: Can one method of “writing down instructions” be
more powerful than another?

Who needs this technology?

Who needs this technology?

Anyone who needs to translate to or from a structured language.

Who needs this technology?

Anyone who needs to translate to or from a structured language.

» Programming

Who needs this technology?

Anyone who needs to translate to or from a structured language.
» Programming
» LaTeX, Web Browsers

Who needs this technology?

Anyone who needs to translate to or from a structured language.
» Programming
» LaTeX, Web Browsers
» Computer Algebra Systems (GAP, Matlab, Mathematica)

Who needs this technology?

Anyone who needs to translate to or from a structured language.
» Programming
» LaTeX, Web Browsers
» Computer Algebra Systems (GAP, Matlab, Mathematica)

Who needs this technology?

Anyone who needs to translate to or from a structured language.
» Programming
» LaTeX, Web Browsers
» Computer Algebra Systems (GAP, Matlab, Mathematica)

This talk will help you understand what these tools are doing...

Who needs this technology?

Anyone who needs to translate to or from a structured language.
» Programming
» LaTeX, Web Browsers
» Computer Algebra Systems (GAP, Matlab, Mathematica)
This talk will help you understand what these tools are doing...

> ...when they succeed in producing output.

Who needs this technology?

Anyone who needs to translate to or from a structured language.
» Programming
» LaTeX, Web Browsers
» Computer Algebra Systems (GAP, Matlab, Mathematica)
This talk will help you understand what these tools are doing...
> ...when they succeed in producing output.

> ...when they give you error messages.

Phases of Compilation

Source Code

DFA Lexical Analyzer Lexing Errors
Tokens
CFG or
Stack Machine Syntax @—» Syntax Errors
Syntax Tree

Semantic@—» Semantic Errors

Decorated Syntax Tree

Code Generator

Turing Machine Executable Code

Lexical Analysis

Source Code

DFA Lexing Errors

4

CFG or
Stack Machine

Syntax Analyzer Syntax Errors

Syntax Tree

A
Semantic@—» Semantic Errors

Decorated Syntax Tree

A
Code Generator

A
Turing Machine Executable Code

Lexical Analysis

Main idea: Decompose a file (a string of characters) into “atomic”
pieces.

Lexical Analysis

Main idea: Decompose a file (a string of characters) into “atomic”
pieces.

> Recognize reserved words and operators:

Lexical Analysis

Main idea: Decompose a file (a string of characters) into “atomic”
pieces.

> Recognize reserved words and operators:

Lexical Analysis

Main idea: Decompose a file (a string of characters) into “atomic”
pieces.
> Recognize reserved words and operators:
» for — FOR_BEGIN

Lexical Analysis

Main idea: Decompose a file (a string of characters) into “atomic”
pieces.
> Recognize reserved words and operators:

» for — FOR_BEGIN
» <=+ LESS_THAN_EQUAL

Lexical Analysis

Main idea: Decompose a file (a string of characters) into “atomic”
pieces.
> Recognize reserved words and operators:
» for — FOR_BEGIN
» <=+ LESS_THAN_EQUAL

» Recognize numerical literals: 453 — INT_LIT (453).

Lexical Analysis

Main idea: Decompose a file (a string of characters) into
pieces.

> Recognize reserved words and operators:

» for — FOR_BEGIN
» <=+ LESS_THAN_EQUAL

» Recognize numerical literals: 453 — INT_LIT (453).
> Recognize “spelling” errors:

“atomic”

Lexical Analysis

Main idea: Decompose a file (a string of characters) into
pieces.

> Recognize reserved words and operators:

» for — FOR_BEGIN
» <=+ LESS_THAN_EQUAL

» Recognize numerical literals: 453 — INT_LIT (453).
> Recognize “spelling” errors:

“atomic”

Lexical Analysis

Main idea: Decompose a file (a string of characters) into “atomic”
pieces.
> Recognize reserved words and operators:
» for — FOR_BEGIN
» <=+ LESS_THAN_EQUAL
» Recognize numerical literals: 453 — INT_LIT (453).
> Recognize “spelling” errors:
» 3.14.14 doesn't define a valid floating point number.

Lexical Analysis

Main idea: Decompose a file (a string of characters) into “atomic”
pieces.
> Recognize reserved words and operators:
» for — FOR_BEGIN
» <=+ LESS_THAN_EQUAL
» Recognize numerical literals: 453 — INT_LIT (453).
> Recognize “spelling” errors:

» 3.14.14 doesn't define a valid floating point number.
» 314!1foo is not a valid variable name in C.

Example

A line of C code (30 characters with whitespace):

int foo = bar + 453;

Example

A line of C code (30 characters with whitespace):
int foo = bar + 453;
becomes a sequence of 7 tokens:

IDENT (int), IDENT(foo), EQUALS, IDENT (bar), PLUS,
INTLIT(453), SEMICOLON

Deterministic Finite Automatons (DFAs)

CFG or
Stack Machine

Source Code

Lexical Analyzer Lexing Errors

Tokens

Syntax @—» Syntax Errors

Syntax Tree

Semantic@—» Semantic Errors

Decorated Syntax Tree

Code Generator

Turing Machine Executable Code

Deterministic Finite Automatons (DFAs)

DFAs are decorated directed graphs.

Deterministic Finite Automatons (DFAs)

DFAs are decorated directed graphs.
» Each edge identified with exactly one letter in the alphabet.

Deterministic Finite Automatons (DFAs)

DFAs are decorated directed graphs.
» Each edge identified with exactly one letter in the alphabet.

» One “start node,” at least one “end node.”

Deterministic Finite Automatons (DFAs)

DFAs are decorated directed graphs.
» Each edge identified with exactly one letter in the alphabet.

» One “start node,” at least one “end node.”

Deterministic Finite Automatons (DFAs)

DFAs are decorated directed graphs.
» Each edge identified with exactly one letter in the alphabet.
» One “start node,” at least one “end node.”

A string is recognized (or accepted) by a given DFA if it
describes a path from the start node to an end node.

DFA Example

A DFA that recognizes identifiers (variable names) and the if
token.

---» IDENT

z
z

DFA Example

Input: if iota

---» IDENT

Output:

DFA Example

Input: if iota

Output:

DFA Example

Input: if iota

---» IDENT

Output:

DFA Example

Input: if iota

Output: IF,

DFA Example

Input: if iota

Output: IF,

DFA Example

Input: if iota

Output: IF,

DFA Example

Input: if iota

Output: IF,

DFA Example

Input: if iota

Output: IF,

DFA Example

Input: if iota

Output: IF, IDENT(iota),

Syntax Analysis

DFA

4

CFG or
Stack Machine

Source Code

Lexical Analyzer Lexing Errors

Syntax Errors

Syntax Tree
Semantic Analyzer Semantic Errors

Decorated Syntax Tree

A

Code Generator

A
Turing Machine Executable Code

Syntax Analysis

Problem: Convert a sequence of tokens to a syntax tree.

Syntax Analysis

Problem: Convert a sequence of tokens to a syntax tree.

» The tree encodes the grammatical structure of the program.

Syntax Analysis

Problem: Convert a sequence of tokens to a syntax tree.
» The tree encodes the grammatical structure of the program.

» We'll store further information about the program on the tree.

Syntax Analysis

Problem: Convert a sequence of tokens to a syntax tree.
» The tree encodes the grammatical structure of the program.
» We'll store further information about the program on the tree.

» Syntax trees are very convenient for operating on programs.

Example:

PROGRAM P
VAR i : INTEGER;

BEGIN
i

. 1;

WHILE i < 10 DO
=0+ 1

ENDDO;

WRITE i — 10; WRITELN;
END.

[DECLS ‘ STATS

|
[left [right ‘ [left [right }—\

[ASSIGN [STATS
[Left [rignt \ [Lett [rignt

STATS

[BINARY ‘ [STATS ‘ [WRITE ‘ [STATS ‘

left [right ‘ [left [right [expr ‘ [left [right

ASSIGN
INTLIT STATNULL WRITELN STATNULL
Lo

[VARREF ‘ [BINARY ‘ [VARREF ‘
[next | [lefc[rignt] [oext | -INTLIT

[DES ULL ‘ VARREE [INTLIT ‘ [DESNULL ‘
NI N’

[DECLS ‘ STATS

|
[left [right ‘ [left [right }-\

ASSIGN [STAT?
[left [right ‘ [left [rlght

WHILE STATS

[BINARY ‘ [STATS ‘ [WRITE ‘ [STATS ‘

left [right ‘ [left [right [expr ‘ [left [right

ASSIGN
INTLIT STATNULL WRITELN STATNULL
B

[VARREF ‘ [BINARY ‘ [VARREF ‘
[next | [lefc[rignt] [oext | -INTLIT

[DESNULL ‘ [INTLIT ‘ [DESNULL ‘

[ASSIGN STATS ‘
[Left [rignt] [Lett [rignt

WHILE

STATS

[BINARY ‘ [STATS ‘ [WRITE ‘ [STATS ‘

left [right ‘ [left [right [expr ‘ [left [right

ASSIGN
INTLIT STATNULL WRITELN STATNULL
B

[VARREF ‘ [BINARY ‘ [VARREF ‘
[next | [lefc[rignt] [oext | -INTLIT

DECLS [STATS
[left [rlght [left [rlght

VARDECL DECLNULL

BINARY ‘ [STATS ‘
left [right ‘ [left [right

[WRITE ‘ [STATS ‘
expr ‘ [left [right

ASSIGN
INTLIT STATNULL WRITELN STATNULL
B

[VARREF ‘ [BINARY ‘ [VARREF ‘
[next | [lefc[rignt] [oext | -INTLIT

[DECLS ‘ STATS ‘

[left [right ‘ [left [right }-\

[ASSIGN STATS ‘
[left [right ‘ left [rlght

[BINARY STATS [WRITE ‘ [STATS ‘
left [right ‘ [left [rlght [expr ‘ [left [right

ASSIGN
INTLIT STATNULL WRITELN STATNULL
Lo

[VARREF ‘ [BINARY ‘ [VARREF ‘
[next | [lefc[rignt] [oext | -INTLIT

[DESNULL ‘ [INTLIT ‘ [DESNULL ‘

[STATS

DECLS ‘ ‘
[left [right ‘ [left [right }-\

ASSIGN ‘ [STATS
|

[Left [rignt] left [right

INTLIT

[

[

STATS

[

=8 st
[owr] [omlnam

[VARREF ‘

WRITELN STATNULL

[VARREF ‘ [BINARY ‘
[next ‘ [left [right ‘

STATNULL

PROGRAM

[bects] [stats |
[left rlght‘ [left rlght}-\
ﬁ ASSIGN [stats |
VARDECL DECLNULL
[Left] rlght [Lett [rignt
INTLIT

[WRITE ‘ STATS

expr left rlght
Lexer | [
BITARY WRITELN STATNULL

INTLIT

PROGRAM

[DECLS ‘ [STATS ‘
[left [rlght [left [right }-\
ﬁ ASSIGN [STATS ‘
[vasoscu | [oscuawn [1eft [right \ [Lett [rignt

STATS

[BINARY ‘ [STATS

|
left [right ‘ [left [right
o

[DECLS ‘ [STATS

|
[left [right ‘ [left [right }—\

[ASSIGN ‘ [STATS
, |
[left [right ‘ [left [rlght

WHILE STATS

[BINARY ‘ [STATS ‘ [WRITE ‘ [STATS ‘

left [right ‘ [left [right [expr ‘ [left [right

ASSIGN
INTLIT STATNULL STATNULL
Lo

[VARREF ‘ [BINARY ‘ [VARREF ‘
[next | [lefc[rignt] [oext | -INTLIT

[DESNULL ‘ [INTLIT ‘ [DESNULL ‘

Stack Machines / Context Free Grammars

Source Code

DFA Lexical Analyzer Lexing Errors

Tokens

A
Syntax P@—» Syntax Errors

Syntax Tree

A
Semantic@—» Semantic Errors

Decorated Syntax Tree

A

Code Generator

A
Turing Machine Executable Code

Stack Machines / Context Free Grammars

Stack Machines / Context Free Grammars

» We specify syntax with a Context Free Grammar (CFG).

Stack Machines / Context Free Grammars

» We specify syntax with a Context Free Grammar (CFG).

» Programs have a single grammatical structure, regardless of
context.

Stack Machines / Context Free Grammars

» We specify syntax with a Context Free Grammar (CFG).

» Programs have a single grammatical structure, regardless of
context.

» English is not context free: “Fruit flies like a banana.”

Stack Machines / Context Free Grammars

» We specify syntax with a Context Free Grammar (CFG).

» Programs have a single grammatical structure, regardless of
context.

» English is not context free: “Fruit flies like a banana.”

Stack Machines / Context Free Grammars

» We specify syntax with a Context Free Grammar (CFG).

» Programs have a single grammatical structure, regardless of
context.

» English is not context free: “Fruit flies like a banana.”
» Context A: “Fruit” is the subject, “flies” is the verb.

Stack Machines / Context Free Grammars

» We specify syntax with a Context Free Grammar (CFG).

» Programs have a single grammatical structure, regardless of
context.
» English is not context free: “Fruit flies like a banana.”

» Context A: “Fruit” is the subject, “flies” is the verb.
» Context B: “Fruit flies”" is the subject, “like" is the verb.

Stack Machines / Context Free Grammars

» We specify syntax with a Context Free Grammar (CFG).

» Programs have a single grammatical structure, regardless of
context.
» English is not context free: “Fruit flies like a banana.”

» Context A: “Fruit” is the subject, “flies” is the verb.
» Context B: “Fruit flies”" is the subject, “like" is the verb.

Stack Machines / Context Free Grammars

» We specify syntax with a Context Free Grammar (CFG).

» Programs have a single grammatical structure, regardless of
context.
» English is not context free: “Fruit flies like a banana.”

» Context A: “Fruit” is the subject, “flies” is the verb.
» Context B: “Fruit flies”" is the subject, “like" is the verb.

Example

Tokens:
Y = {while,do, done, true,or,not, :=, ;, (,),x,y,2}
Grammar:

Stats — Stat ; Stats | ¢

Stat — Ident := Exp | while Exp do Stats done
Exp — (Exp or Exp) | (not Exp) | Ident| true
Ident — x | y | z

Example Program:

while (not x) do x := (not x); done; y := Xx;

Stack Machines

A recipe for creating automatons:

Stack Machines

A recipe for creating automatons:

» Take a finite directed graph G.

Stack Machines

A recipe for creating automatons:
» Take a finite directed graph G.
> Add a data structure.

Stack Machines

A recipe for creating automatons:
» Take a finite directed graph G.
> Add a data structure.

» Decorate edges of G with symbols of the input alphabet and
operations on the data structure.

Stack Machines

A recipe for creating automatons:
» Take a finite directed graph G.
> Add a data structure.

» Decorate edges of G with symbols of the input alphabet and
operations on the data structure.

Stack Machines

A recipe for creating automatons:
» Take a finite directed graph G.
» Add a data structure.
» Decorate edges of G with symbols of the input alphabet and
operations on the data structure.
For Stack Machines the added data structure is a stack. We
may:

Stack Machines

A recipe for creating automatons:

» Take a finite directed graph G.

» Add a data structure.

» Decorate edges of G with symbols of the input alphabet and

operations on the data structure.

For Stack Machines the added data structure is a stack. We
may:

» Push symbols onto the stack.

Stack Machines

A recipe for creating automatons:
» Take a finite directed graph G.
> Add a data structure.

» Decorate edges of G with symbols of the input alphabet and
operations on the data structure.

For Stack Machines the added data structure is a stack. We
may:
» Push symbols onto the stack.

» Pop symbols off the stack.

Stack Machines

A recipe for creating automatons:
» Take a finite directed graph G.
> Add a data structure.

» Decorate edges of G with symbols of the input alphabet and
operations on the data structure.

For Stack Machines the added data structure is a stack. We
may:

» Push symbols onto the stack.

» Pop symbols off the stack.

> Peek at the top stack symbol.

Stack Machines

A recipe for creating automatons:
» Take a finite directed graph G.
> Add a data structure.

» Decorate edges of G with symbols of the input alphabet and
operations on the data structure.

For Stack Machines the added data structure is a stack. We
may:

» Push symbols onto the stack.

» Pop symbols off the stack.

> Peek at the top stack symbol.

Stack Machines

A recipe for creating automatons:
» Take a finite directed graph G.
> Add a data structure.

» Decorate edges of G with symbols of the input alphabet and
operations on the data structure.

For Stack Machines the added data structure is a stack. We
may:

» Push symbols onto the stack.

» Pop symbols off the stack.

> Peek at the top stack symbol.
Notation:

Stack Machines

A recipe for creating automatons:
» Take a finite directed graph G.
> Add a data structure.

» Decorate edges of G with symbols of the input alphabet and
operations on the data structure.

For Stack Machines the added data structure is a stack. We
may:

» Push symbols onto the stack.

» Pop symbols off the stack.

> Peek at the top stack symbol.
Notation:

» $: The end of the input string.

Stack Machines

A recipe for creating automatons:
» Take a finite directed graph G.
> Add a data structure.

» Decorate edges of G with symbols of the input alphabet and
operations on the data structure.

For Stack Machines the added data structure is a stack. We
may:

» Push symbols onto the stack.

» Pop symbols off the stack.

> Peek at the top stack symbol.
Notation:

» $: The end of the input string.

» Edges decorated with “x : [PUSH/POP/PEEK] y", where x
and y are tokens.

Example

A stack machine to recognize {a"b" : n € N}:

a : PUSH a b : POP a

A A B,
a : awb. a'u$. =©

Example

A stack machine to recognize {a"b" : n € N}:

a : PUSH a b : POP a

A A B,
a : awb. a'u$. =©

Here, the stack lets us:

Example

A stack machine to recognize {a"b" : n € N}:

a : PUSH a b : POP a

A A B,
a : awb. a'u$. =©

Here, the stack lets us:

» Count up the number of a's.

Example

A stack machine to recognize {a"b" : n € N}:

a : PUSH a b : POP a

A A B,
a : awb. a'u$. =©

Here, the stack lets us:

» Count up the number of a's.

» Count off the number of b's.

Example

Input: aabb$
Stack:

a : PUSH a b : POP a

PP SIS S
a o aU$. @

Example

Input: =abb$
Stack: a

a : PUSH a b : POP a

()a:PUSHa}Q b : POP a [/ ;$:EMPTY=©

Example

Input: =2bb$
Stack: aa

a : PUSH a b : POP a

()a:PUSHa}Q b : POP a [/ ;$:EMPTY=©

Example

Input: b$
Stack: a

a : PUSH a b : POP a

()a:PUSHa/ kb:POPaQ $:EMPTY©

Example

Input: $
Stack:

a : PUSH a b : POP a

()a:PUSHa/ kb:POPa\Q $:EMPTY‘©

Example

Input:
Stack:

a : PUSH a b : POP a

a : PUSH a ((E b : POP a /(k $:EMPTY‘.
() N/ N/

Semantic Analysis

DFA

4

CFG or
Stack Machine

A
Turing Machine

Source Code

Lexical Analyzer Lexing Errors

Tokens

A
Syntax Analyzer

Syntax Errors

Syntax Tree
Semantic Errors
Decorated Syntax Tree

Code Generator

Executable Code

Semantic Analysis

We want compilers that...

Semantic Analysis

We want compilers that...

» ...help us avoid making silly mistakes.

Semantic Analysis

We want compilers that...
» ...help us avoid making silly mistakes.

» ...produce the program we expect.

Semantic Analysis

We want compilers that...
» ...help us avoid making silly mistakes.

» ...produce the program we expect.

Semantic Analysis

We want compilers that...
» ...help us avoid making silly mistakes.
» ...produce the program we expect.

During the semantic analysis step we gather information about:

Semantic Analysis

We want compilers that...
» ...help us avoid making silly mistakes.
» ...produce the program we expect.
During the semantic analysis step we gather information about:

» Variables

Semantic Analysis

We want compilers that...
» ...help us avoid making silly mistakes.
» ...produce the program we expect.

During the semantic analysis step we gather information about:
> Variables

» Scope

Semantic Analysis

We want compilers that...
» ...help us avoid making silly mistakes.
» ...produce the program we expect.
During the semantic analysis step we gather information about:
> Variables
» Scope

» Type — what a variable is supposed to represent.

Semantic Analysis

This is one of the more “language dependent” parts of a compiler.
Assuming a strongly typed language (like C), we will:

Semantic Analysis

This is one of the more “language dependent” parts of a compiler.
Assuming a strongly typed language (like C), we will:

> Build data structures that categorize variables and procedure
calls.

Semantic Analysis

This is one of the more “language dependent” parts of a compiler.
Assuming a strongly typed language (like C), we will:
> Build data structures that categorize variables and procedure
calls.
» Traverse the syntax tree:

Semantic Analysis

This is one of the more “language dependent” parts of a compiler.
Assuming a strongly typed language (like C), we will:
> Build data structures that categorize variables and procedure
calls.
» Traverse the syntax tree:

Semantic Analysis

This is one of the more “language dependent” parts of a compiler.
Assuming a strongly typed language (like C), we will:
> Build data structures that categorize variables and procedure
calls.
» Traverse the syntax tree:
» Accumulate data from declarations.

Semantic Analysis

This is one of the more “language dependent” parts of a compiler.
Assuming a strongly typed language (like C), we will:
> Build data structures that categorize variables and procedure
calls.
» Traverse the syntax tree:

» Accumulate data from declarations.
» Examine statements, making sure they're well formed.

Semantic Analysis

Semantic Analysis

Examples of errors:

Semantic Analysis

Examples of errors:

» Using a variable/procedure without declaring it.

Semantic Analysis

Examples of errors:
» Using a variable/procedure without declaring it.

> Using a variable in a way that doesn't agree with it's type
(Ex. adding a string to an int).

Semantic Analysis

Examples of errors:
» Using a variable/procedure without declaring it.

> Using a variable in a way that doesn't agree with it's type
(Ex. adding a string to an int).

» Declaring a variable several times in the same scope, with
different types.

Semantic Analysis

Examples of errors:
» Using a variable/procedure without declaring it.

> Using a variable in a way that doesn't agree with it's type
(Ex. adding a string to an int).

» Declaring a variable several times in the same scope, with
different types.

Semantic Analysis

Examples of errors:
» Using a variable/procedure without declaring it.

> Using a variable in a way that doesn't agree with it's type
(Ex. adding a string to an int).

» Declaring a variable several times in the same scope, with
different types.

Important: The more you know at compile-time, the more
efficient you can make your machine/byte code.

Turing Machines

Source Code

DFA Lexical Analyzer Lexing Errors
Tokens
A
A
CFGor Ij
Stack Machine Syntax AnalE,—» Syntax Errors
Syntax Tree

A
Semantic@—» Semantic Errors

Decorated Syntax Tree

A

Code Generator

y
— Executable Gode

Turing Machines

Definition:

Turing Machines

Definition:
» Start with a finite directed graph G.

Turing Machines

Definition:
» Start with a finite directed graph G.
» Add a data structure — an infinite tape.

Turing Machines

Definition:
» Start with a finite directed graph G.
» Add a data structure — an infinite tape.

Turing Machines

Definition:
» Start with a finite directed graph G.

» Add a data structure — an infinite tape.
> An array that can be “grown” in either direction.

Turing Machines

Definition:
» Start with a finite directed graph G.

» Add a data structure — an infinite tape.

> An array that can be “grown” in either direction.
» We can only inspect the array element the read/write head
covers.

Turing Machines

Definition:
» Start with a finite directed graph G.

» Add a data structure — an infinite tape.

> An array that can be “grown” in either direction.

» We can only inspect the array element the read/write head
covers.

» Operations: read cell, write cell, and move read/write head
left/right one cell.

Turing Machines

Definition:
» Start with a finite directed graph G.

» Add a data structure — an infinite tape.

> An array that can be “grown” in either direction.

» We can only inspect the array element the read/write head
covers.

» Operations: read cell, write cell, and move read/write head
left/right one cell.

» Decorate edges of G with instructions for:

Turing Machines

Definition:
» Start with a finite directed graph G.

» Add a data structure — an infinite tape.

> An array that can be “grown” in either direction.

» We can only inspect the array element the read/write head
covers.

» Operations: read cell, write cell, and move read/write head
left/right one cell.

» Decorate edges of G with instructions for:

Turing Machines

Definition:
» Start with a finite directed graph G.

» Add a data structure — an infinite tape.

> An array that can be “grown” in either direction.

» We can only inspect the array element the read/write head
covers.

» Operations: read cell, write cell, and move read/write head
left/right one cell.

» Decorate edges of G with instructions for:
» The symbol observed on the tape.

Turing Machines

Definition:
» Start with a finite directed graph G.

» Add a data structure — an infinite tape.

> An array that can be “grown” in either direction.

» We can only inspect the array element the read/write head
covers.

» Operations: read cell, write cell, and move read/write head
left/right one cell.

» Decorate edges of G with instructions for:

» The symbol observed on the tape.
> Instructions for what to write to the tape.

Turing Machines

Definition:
» Start with a finite directed graph G.

» Add a data structure — an infinite tape.

> An array that can be “grown” in either direction.

» We can only inspect the array element the read/write head
covers.

» Operations: read cell, write cell, and move read/write head
left/right one cell.

» Decorate edges of G with instructions for:

» The symbol observed on the tape.
> Instructions for what to write to the tape.
» Instructions for which way to move the read/write head.

Turing Machines

DFA's are strictly weaker than CFG'’s, which are strictly weaker
than Turing Machines.

Turing Machines

DFA's are strictly weaker than CFG'’s, which are strictly weaker
than Turing Machines.

Compilers Viewpoint:

Turing Machines

DFA's are strictly weaker than CFG'’s, which are strictly weaker
than Turing Machines.

Compilers Viewpoint:

» A compiler is a “proof” that the input language is no stronger
than the output language.

Turing Machines

DFA's are strictly weaker than CFG'’s, which are strictly weaker
than Turing Machines.

Compilers Viewpoint:

» A compiler is a “proof” that the input language is no stronger
than the output language.

» Translating from a high-level language directly to a low-level
language is hard.

Turing Machines

DFA's are strictly weaker than CFG'’s, which are strictly weaker
than Turing Machines.

Compilers Viewpoint:

» A compiler is a “proof” that the input language is no stronger
than the output language.

» Translating from a high-level language directly to a low-level
language is hard.

> Instead, we can pass through a number of intermediate
languages.

Generating Machine Code

Source Code

DFA Lexical Analyzer Lexing Errors
Tokens
A
A
CFGor Ij
Stack Machine Syntax AnalE,—» Syntax Errors
Syntax Tree
A

Semantic Analyzer Semantic Errors

Decorated Syntax Tree

A
Turing Machine Executable Code

Generating Machine Code

This step is closely tied to the architecture or virtual machine
you choose to target.
For Microprocessors:

Generating Machine Code

This step is closely tied to the architecture or virtual machine
you choose to target.
For Microprocessors:

» Compiler Output: Instructions for the CPU

Generating Machine Code

This step is closely tied to the architecture or virtual machine
you choose to target.

For Microprocessors:
» Compiler Output: Instructions for the CPU

» To perform any calculation, you need to store data in one of
finitely many registers.

Generating Machine Code

This step is closely tied to the architecture or virtual machine
you choose to target.
For Microprocessors:

» Compiler Output: Instructions for the CPU

» To perform any calculation, you need to store data in one of
finitely many registers.
» Problem: How can we ensure:

Generating Machine Code

This step is closely tied to the architecture or virtual machine
you choose to target.
For Microprocessors:

» Compiler Output: Instructions for the CPU

» To perform any calculation, you need to store data in one of
finitely many registers.
» Problem: How can we ensure:

Generating Machine Code

This step is closely tied to the architecture or virtual machine
you choose to target.
For Microprocessors:

» Compiler Output: Instructions for the CPU

» To perform any calculation, you need to store data in one of
finitely many registers.
» Problem: How can we ensure:
» Correctness — no data gets clobbered.

Generating Machine Code

This step is closely tied to the architecture or virtual machine
you choose to target.
For Microprocessors:

» Compiler Output: Instructions for the CPU

» To perform any calculation, you need to store data in one of
finitely many registers.

» Problem: How can we ensure:

» Correctness — no data gets clobbered.
» Speed

Generating Machine Code

This step is closely tied to the architecture or virtual machine
you choose to target.
For Microprocessors:

» Compiler Output: Instructions for the CPU

» To perform any calculation, you need to store data in one of
finitely many registers.
» Problem: How can we ensure:
» Correctness — no data gets clobbered.
» Speed

» Pros: Programs run faster.

Generating Machine Code

This step is closely tied to the architecture or virtual machine
you choose to target.
For Microprocessors:

» Compiler Output: Instructions for the CPU

» To perform any calculation, you need to store data in one of
finitely many registers.

v

Problem: How can we ensure:

» Correctness — no data gets clobbered.
» Speed

v

Pros: Programs run faster.
Cons:

v

Generating Machine Code

This step is closely tied to the architecture or virtual machine
you choose to target.
For Microprocessors:

» Compiler Output: Instructions for the CPU

» To perform any calculation, you need to store data in one of
finitely many registers.

v

Problem: How can we ensure:

» Correctness — no data gets clobbered.
» Speed

v

Pros: Programs run faster.
Cons:

v

Generating Machine Code

This step is closely tied to the architecture or virtual machine
you choose to target.
For Microprocessors:

» Compiler Output: Instructions for the CPU

» To perform any calculation, you need to store data in one of
finitely many registers.

v

Problem: How can we ensure:

» Correctness — no data gets clobbered.
» Speed

v

Pros: Programs run faster.
Cons:

v

» An intermediate representation is necessary.

Generating Machine Code

This step is closely tied to the architecture or virtual machine

you
For

>

>

v

v

v

choose to target.
Microprocessors:
Compiler Output: Instructions for the CPU
To perform any calculation, you need to store data in one of
finitely many registers.
Problem: How can we ensure:
» Correctness — no data gets clobbered.
» Speed
Pros: Programs run faster.
Cons:

» An intermediate representation is necessary.
» Your compiler is tied to a particular architecture.

Example

PROGRAM FACTORIAL ;

VAR i : INTEGER;

VAR prod : INTEGER;
BEGIN

i = 1;
prod = 1;

WHILE i <= 10 DO
prod := prod x i;
=1+ 1;

ENDDO;

WRITE prod; WRITELN;
END.

Intermediate Representation Example

© 00 N O U WN -

= s
W N = O

assign
assign
le

joz
mul
assign
add
assign
Jjump
assign
write
writeln
end

vO
vl
v2
v2
v3
vl
vad
vO

vb
v5

vO
10
vl
v3
vO
v4

vl

10

vO

Assembly Language Example (MIPS)

Triple Code

MIPS Assembly

1| assign vO
2 | assign vl

3| le v2

4 | joz v2

1

1

vO

10

10

1i $t0,
swW $t0,
1i $t0,
sw $t0,
1w $t1,
1i $t2,
sle $t0,
sw $t0,
label_3:

1w $t0,

beq $zero,

1
24($sp)
1
28($sp)
24 ($sp)
10

$t1,
40($sp)

40 ($sp)
$to,

$t2

label_10

Virtual Machines / Interpreters

Virtual Machines / Interpreters

» Compiler Output: A sequence of bytes to be interpreted as
low-level instructions by another program.

Virtual Machines / Interpreters

» Compiler Output: A sequence of bytes to be interpreted as
low-level instructions by another program.
» Pros:

Virtual Machines / Interpreters

» Compiler Output: A sequence of bytes to be interpreted as
low-level instructions by another program.
» Pros:

Virtual Machines / Interpreters

» Compiler Output: A sequence of bytes to be interpreted as
low-level instructions by another program.
» Pros:
» Easier to produce virtual machine code.

Virtual Machines / Interpreters

» Compiler Output: A sequence of bytes to be interpreted as
low-level instructions by another program.
» Pros:

» Easier to produce virtual machine code.
» Easier to implement “high level features” correctly.

Virtual Machines / Interpreters

» Compiler Output: A sequence of bytes to be interpreted as
low-level instructions by another program.
» Pros:

» Easier to produce virtual machine code.
» Easier to implement “high level features” correctly.
» Not tied to a particular architecture.

Virtual Machines / Interpreters

» Compiler Output: A sequence of bytes to be interpreted as
low-level instructions by another program.
» Pros:
» Easier to produce virtual machine code.

» Easier to implement “high level features” correctly.
» Not tied to a particular architecture.

» Cons: Poor performance (sometimes).

Virtual Machines / Interpreters

Many languages use a virtual machine or interpreter rather than
compiling to assembly:

Virtual Machines / Interpreters

Many languages use a virtual machine or interpreter rather than
compiling to assembly:

» Examples: Java, Python, Lisp

Virtual Machines / Interpreters

Many languages use a virtual machine or interpreter rather than
compiling to assembly:

» Examples: Java, Python, Lisp
» Examples: Sage, GAP

Virtual Machines / Interpreters

Many languages use a virtual machine or interpreter rather than
compiling to assembly:

» Examples: Java, Python, Lisp
» Examples: Sage, GAP

» Many interpreters are stack-based. Bytecode running on a
virtual machine looks like:

Virtual Machines / Interpreters

Many languages use a virtual machine or interpreter rather than
compiling to assembly:

» Examples: Java, Python, Lisp
» Examples: Sage, GAP

» Many interpreters are stack-based. Bytecode running on a
virtual machine looks like:

Virtual Machines / Interpreters

Many languages use a virtual machine or interpreter rather than
compiling to assembly:

» Examples: Java, Python, Lisp

» Examples: Sage, GAP

» Many interpreters are stack-based. Bytecode running on a
virtual machine looks like:

» A list of instructions.

Virtual Machines / Interpreters

Many languages use a virtual machine or interpreter rather than
compiling to assembly:

» Examples: Java, Python, Lisp

» Examples: Sage, GAP

» Many interpreters are stack-based. Bytecode running on a
virtual machine looks like:
> A list of instructions.
» An array of memory (for storing variables).

Virtual Machines / Interpreters

Many languages use a virtual machine or interpreter rather than
compiling to assembly:

» Examples: Java, Python, Lisp
» Examples: Sage, GAP

» Many interpreters are stack-based. Bytecode running on a
virtual machine looks like:
» A list of instructions.
» An array of memory (for storing variables).
» A stack for performing calculations (in lieu of registers).

Virtual Machines / Interpreters

Many virtual machines use an operand stack to calculate.

Virtual Machines / Interpreters

Many virtual machines use an operand stack to calculate.
» Instead of operating on registers:

Virtual Machines / Interpreters

Many virtual machines use an operand stack to calculate.
» Instead of operating on registers:

Virtual Machines / Interpreters

Many virtual machines use an operand stack to calculate.

» Instead of operating on registers:
» Push values onto the stack.

Virtual Machines / Interpreters

Many virtual machines use an operand stack to calculate.

» Instead of operating on registers:

» Push values onto the stack.
» Pop values off, operate on them.

Virtual Machines / Interpreters

Many virtual machines use an operand stack to calculate.

» Instead of operating on registers:
» Push values onto the stack.
» Pop values off, operate on them.
» Push the results onto the stack.

Virtual Machines / Interpreters

Many virtual machines use an operand stack to calculate.

» Instead of operating on registers:

» Push values onto the stack.
» Pop values off, operate on them.
» Push the results onto the stack.

» Similar to Reverse Polish Notation.

Virtual Machines / Interpreters

Many virtual machines use an operand stack to calculate.

» Instead of operating on registers:

» Push values onto the stack.
» Pop values off, operate on them.
» Push the results onto the stack.

» Similar to Reverse Polish Notation.

Virtual Machines / Interpreters

Many virtual machines use an operand stack to calculate.

» Instead of operating on registers:

» Push values onto the stack.
» Pop values off, operate on them.
» Push the results onto the stack.

» Similar to Reverse Polish Notation.

Example: 5 * (3 + 2) becomes

Instructions Stack State

push 5 5

push 3 53
push 2 5,3, 2
add 5, (3+2)
mul 5(3+2)

Bytecode Example

[
MHOKO(XJ\IO)O‘I#OO[\)!—\O

[
(62 SN OV)

alloc
push
push
store
push
push
store
push
get
push
le
joz
push
push
get
push

o

10

26

Addr.

Value :

Addr.
Value

WHILE

Value

Addr.

Addr.

Addr.

.

prod
=1

start
=10
prod
prod

i

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

get
mul_i
store
push
push
get
push
add_i
store
jump
push
get
write T
writeln
end

h
)

b

h
h

Addr.
Addr.

Value :

I
-

WHILE end

Addr.

prod

Open Problems

Open Problems

1. Obfuscation : Given a program P, how can | modify P to
make it difficult for others to steal my trade secrets,
algorithms, etc.?

Open Problems

1. Obfuscation : Given a program P, how can | modify P to
make it difficult for others to steal my trade secrets,
algorithms, etc.?

2. Deobfuscation : Given an obfuscated program P, what can |
learn about the operations of P?

Open Problems

1. Obfuscation : Given a program P, how can | modify P to
make it difficult for others to steal my trade secrets,
algorithms, etc.?

2. Deobfuscation : Given an obfuscated program P, what can |
learn about the operations of P?

3. Decompilation : Given an executable E, can | generate source
code S that compiles to E?

