Joseph Thomas

University of Arizona Department of Mathematics

April 11, 2012

1

Today I'll discuss part of a paper by Ezra Miller and Igor Pak.

Today I'll discuss part of a paper by Ezra Miller and Igor Pak. Their objects of study are **polytopes**. These are:

Today I'll discuss part of a paper by Ezra Miller and Igor Pak. Their objects of study are **polytopes**. These are:

• Convex, bounded subsets of \mathbb{R}^n .

Today I'll discuss part of a paper by Ezra Miller and Igor Pak. Their objects of study are **polytopes**. These are:

- Convex, bounded subsets of \mathbb{R}^n .
- Determined by an intersection of finitely many half-spaces.

Today I'll discuss part of a paper by Ezra Miller and Igor Pak. Their objects of study are **polytopes**. These are:

- Convex, bounded subsets of \mathbb{R}^n .
- Determined by an intersection of finitely many half-spaces.

Today I'll discuss part of a paper by Ezra Miller and Igor Pak. Their objects of study are **polytopes**. These are:

• Convex, bounded subsets of \mathbb{R}^n .

Determined by an intersection of finitely many half-spaces.
Conventions:

Today I'll discuss part of a paper by Ezra Miller and Igor Pak. Their objects of study are **polytopes**. These are:

• Convex, bounded subsets of \mathbb{R}^n .

Determined by an intersection of finitely many half-spaces. Conventions:

• $P \subset \mathbb{R}^{d+1}$ denotes a polytope.

Today I'll discuss part of a paper by Ezra Miller and Igor Pak. Their objects of study are **polytopes**. These are:

- Convex, bounded subsets of \mathbb{R}^n .
- Determined by an intersection of finitely many half-spaces.

Conventions:

• $P \subset \mathbb{R}^{d+1}$ denotes a polytope.

• $S := \partial P$.

In their paper, Miller and Pak investigate unfoldings of polytopes' boundaries. These are:

In their paper, Miller and Pak investigate unfoldings of polytopes' boundaries. These are:

■ Flat Riemannian *d*-manifolds with "singularities."

In their paper, Miller and Pak investigate unfoldings of polytopes' boundaries. These are:

- Flat Riemannian *d*-manifolds with "singularities."
- A "gluing" of some number of *d*-dimensional polytopes.

In their paper, Miller and Pak investigate unfoldings of polytopes' boundaries. These are:

- Flat Riemannian *d*-manifolds with "singularities."
- A "gluing" of some number of *d*-dimensional polytopes.

In their paper, Miller and Pak investigate unfoldings of polytopes' boundaries. These are:

Flat Riemannian *d*-manifolds with "singularities."

• A "gluing" of some number of *d*-dimensional polytopes. Questions:

In their paper, Miller and Pak investigate unfoldings of polytopes' boundaries. These are:

Flat Riemannian *d*-manifolds with "singularities."

• A "gluing" of some number of *d*-dimensional polytopes. Questions:

How to visualize and understand S?

In their paper, Miller and Pak investigate unfoldings of polytopes' boundaries. These are:

Flat Riemannian *d*-manifolds with "singularities."

• A "gluing" of some number of *d*-dimensional polytopes. Questions:

- How to visualize and understand S?
- How can one deal with S computationally?

Overview

Background

- (a) Polytope Combinatorics
- (b) Polytope Geometry
- (c) Riemannian Geometry
- 2 Geodesics on Polytopes
- 3 Mount's Lemma and the Cut Locus
- 4 Source Unfolding

An open problem from the 1500's:

Conjecture

Suppose $P \subset \mathbb{R}^3$ is a polytope. Then ∂P can be cut along its edges and unfolded into a single connected subset of the plane.

One of Dürer's unfoldings.

• Convexity is necessary (see left).

- Convexity is necessary (see left).
- Combinatorics: How are edges, faces, and vertices connected?

- Convexity is necessary (see left).
- Combinatorics: How are edges, faces, and vertices connected?
- Geometry: How do lengths, angles, and areas affect the unfolding?

Fix a source point $v \in S$. A source unfolding $\varphi : S \setminus K \to \mathbb{R}^d$ is a map such that:

Fix a source point $v \in S$. A source unfolding $\varphi : S \setminus K \to \mathbb{R}^d$ is a map such that:

• φ is a local isometry.

Fix a source point $v \in S$. A source unfolding $\varphi : S \setminus K \to \mathbb{R}^d$ is a map such that:

- φ is a local isometry.
- K, the set of "cuts," is comprised of a finite number of (*d* − 1)-dimensional polyhedra.

Fix a source point $v \in S$. A source unfolding $\varphi : S \setminus K \to \mathbb{R}^d$ is a map such that:

- φ is a local isometry.
- K, the set of "cuts," is comprised of a finite number of (*d* − 1)-dimensional polyhedra.

Fix a source point $v \in S$. A source unfolding $\varphi : S \setminus K \to \mathbb{R}^d$ is a map such that:

- φ is a local isometry.
- K, the set of "cuts," is comprised of a finite number of (d − 1)-dimensional polyhedra.

In this model:

Fix a source point $v \in S$. A source unfolding $\varphi : S \setminus K \to \mathbb{R}^d$ is a map such that:

- φ is a local isometry.
- K, the set of "cuts," is comprised of a finite number of (*d* − 1)-dimensional polyhedra.

In this model:

• Cuts are allowed to "slice" through faces of S.

Fix a source point $v \in S$. A source unfolding $\varphi : S \setminus K \to \mathbb{R}^d$ is a map such that:

- φ is a local isometry.
- K, the set of "cuts," is comprised of a finite number of (d-1)-dimensional polyhedra.

In this model:

- Cuts are allowed to "slice" through faces of S.
- In our construction, shortest paths starting at v unfold to straight lines.

We'll show every convex polytope has a source unfolding.

We'll show every convex polytope has a source unfolding. Applications:

We'll show every convex polytope has a source unfolding. Applications:

Robotics

We'll show every convex polytope has a source unfolding. Applications:

- Robotics
- Optimization φ records shortest paths from the source point to any other point in S (similar to Dijkstra's algorithm).

Example: A Cube

Edge and source unfoldings of a cube. Image Credit: Ezra Miller and Igor Pak

Example: A Hypercube

and a source unfolding. Image Credit: John Baez/Creative Commons (left)

Polytopes
Q: How are polytopes specified?

- Q: How are polytopes specified?
- A: Basically, irredundant systems of linear inequalities $(Ax \le b)$.

- Q: How are polytopes specified?
- A: Basically, irredundant systems of linear inequalities $(Ax \le b)$.
- Q: What "standard" tools are available for understanding polytopes?

- Q: How are polytopes specified?
- A: Basically, irredundant systems of linear inequalities $(Ax \le b)$.
- Q: What "standard" tools are available for understanding polytopes?
- A: Linear algebra, lattice theory, and techniques from linear programming.

Visualizing Polytopes

Visualizing Polytopes

Here, however, a word of warning may be in order: do **not** try to visualize n-dimensional objects for $n \ge 4$. Such an effort is not only doomed to failure—it may be dangerous to your mental health. (If you do succeed, then you are in trouble.)

-V. Chvátal

Proposition (Diamond Property for Face Containments)

Suppose $F \supset V$ are k and (k - 2)-dimensional faces respectively. There exist exactly two (k - 1)-dimensional faces E, E' so that $V \subseteq E, E' \subseteq F$.

Proposition (Diamond Property for Face Containments)

Suppose $F \supset V$ are k and (k - 2)-dimensional faces respectively. There exist exactly two (k - 1)-dimensional faces E, E' so that $V \subseteq E, E' \subseteq F$.

Examples: $P \subseteq \mathbb{R}^3$

Proposition (Diamond Property for Face Containments)

Suppose $F \supset V$ are k and (k - 2)-dimensional faces respectively. There exist exactly two (k - 1)-dimensional faces E, E' so that $V \subseteq E, E' \subseteq F$.

Examples: $P \subseteq \mathbb{R}^3$

Exactly two edges of a face contain a given vertex.

Proposition (Diamond Property for Face Containments)

Suppose $F \supset V$ are k and (k - 2)-dimensional faces respectively. There exist exactly two (k - 1)-dimensional faces E, E' so that $V \subseteq E, E' \subseteq F$.

Examples: $P \subseteq \mathbb{R}^3$

- Exactly two edges of a face contain a given vertex.
- When two faces meet, they do so along exactly one edge.

From \mathbb{R}^3 : The sum of the face angles around a vertex is less than 2π .

From \mathbb{R}^3 : The sum of the face angles around a vertex is less than 2π .

Using the diamond property, we can define the **angle** that a k-face forms with a (k - 2)-face.

From \mathbb{R}^3 : The sum of the face angles around a vertex is less than 2π .

Using the diamond property, we can define the **angle** that a k-face forms with a (k - 2)-face.

Suppose V is a (d-2)-face.

From \mathbb{R}^3 : The sum of the face angles around a vertex is less than 2π .

Using the diamond property, we can define the **angle** that a k-face forms with a (k - 2)-face.

Suppose V is a (d-2)-face. $\sum \{ \text{face angles about } V \} < 2\pi.$

From \mathbb{R}^3 : The sum of the face angles around a vertex is less than 2π .

Using the diamond property, we can define the **angle** that a k-face forms with a (k - 2)-face.

Suppose V is a (d-2)-face.

- \sum {face angles about V} < 2π .
- If x ∈ relintV, there is a neighborhood of x isometric to a neighborhood of ℝ^{d-2} × C, C a polyhedral cone (dimension 2).

A **Riemannian manifold** is a smooth manifold M equipped with a symmetric, positive-definite 2-tensor field g. This yields:

an inner product on each tangent space,

- an inner product on each tangent space,
- notions of length and angles,

- an inner product on each tangent space,
- notions of length and angles,
- geodesics (paths which are locally shortest paths), and

- an inner product on each tangent space,
- notions of length and angles,
- geodesics (paths which are locally shortest paths), and
- the exponential map $\exp : \mathcal{E} \to M$, $\mathcal{E} \subseteq T_p M$.

- an inner product on each tangent space,
- notions of length and angles,
- geodesics (paths which are locally shortest paths), and
- the exponential map $\exp : \mathcal{E} \to M$, $\mathcal{E} \subseteq T_p M$.

A **Riemannian manifold** is a smooth manifold M equipped with a symmetric, positive-definite 2-tensor field g. This yields:

- an inner product on each tangent space,
- notions of length and angles,
- geodesics (paths which are locally shortest paths), and
- the **exponential map** exp : $\mathcal{E} \to M$, $\mathcal{E} \subseteq T_p M$.

To find exp(v):

A **Riemannian manifold** is a smooth manifold M equipped with a symmetric, positive-definite 2-tensor field g. This yields:

- an inner product on each tangent space,
- notions of length and angles,
- geodesics (paths which are locally shortest paths), and
- the **exponential map** exp : $\mathcal{E} \to M$, $\mathcal{E} \subseteq T_p M$.

To find exp(v):

(i) Take the geodesic γ traveling through p in the direction specified by v.

A **Riemannian manifold** is a smooth manifold M equipped with a symmetric, positive-definite 2-tensor field g. This yields:

- an inner product on each tangent space,
- notions of length and angles,
- geodesics (paths which are locally shortest paths), and
- the exponential map $\exp : \mathcal{E} \to M$, $\mathcal{E} \subseteq T_p M$.

To find exp(v):

- (i) Take the geodesic γ traveling through p in the direction specified by v.
- (ii) Follow γ for arc length ||v||. The endpoint is $\exp(v)$.

A **Riemannian manifold** is a smooth manifold M equipped with a symmetric, positive-definite 2-tensor field g. This yields:

- an inner product on each tangent space,
- notions of length and angles,
- geodesics (paths which are locally shortest paths), and
- the exponential map $\exp : \mathcal{E} \to M$, $\mathcal{E} \subseteq T_p M$.

To find exp(v):

- (i) Take the geodesic γ traveling through p in the direction specified by v.
- (ii) Follow γ for arc length ||v||. The endpoint is $\exp(v)$.
- (iii) If you can't do (ii), then $v \notin \mathcal{E}$.

Riemannian Geometry — The Exponential Map

We need: A combinatorial characterization of shortest paths that begin in the relative interior of a d-face. Outline:

• Geodesics in \mathbb{R}^n are straight lines.

- Geodesics in \mathbb{R}^n are straight lines.
- A shortest path intersects a face in at most a line segment.

- Geodesics in \mathbb{R}^n are straight lines.
- A shortest path intersects a face in at most a line segment.
- Geodesics can't pass through k-faces, $k \le d 2$.

- Geodesics in \mathbb{R}^n are straight lines.
- A shortest path intersects a face in at most a line segment.
- Geodesics can't pass through k-faces, $k \leq d 2$.
- A shortest path starting inside a *d*-face intersects (*d* − 1)-faces in at most one point.

- Geodesics in \mathbb{R}^n are straight lines.
- A shortest path intersects a face in at most a line segment.
- Geodesics can't pass through k-faces, $k \leq d 2$.
- A shortest path starting inside a *d*-face intersects (*d* − 1)-faces in at most one point.

We need: A combinatorial characterization of shortest paths that begin in the relative interior of a d-face. Outline:

- Geodesics in \mathbb{R}^n are straight lines.
- A shortest path intersects a face in at most a line segment.
- Geodesics can't pass through k-faces, $k \leq d 2$.
- A shortest path starting inside a *d*-face intersects (*d* − 1)-faces in at most one point.

Conclusion: A shortest paths γ is specified by its endpoints and the sequence of *d*-faces it traverses.

Geodesics avoid k-faces, $k \le d-2$

Suppose γ is a geodesic ($\gamma = \eta . \eta'$) passing through w in a k-face F.

Geodesics avoid k-faces, $k \le d-2$

Suppose γ is a geodesic ($\gamma = \eta . \eta'$) passing through w in a k-face F.

Geodesics avoid k-faces, $k \le d-2$

Suppose γ is a geodesic ($\gamma = \eta . \eta'$) passing through w in a k-face F.

d = 2 The sum of the face angles about w is $< 2\pi$. We can "cut and flatten" S to find a locally shorter path.

Geodesics avoid k-faces, $k \le d-2$

Suppose γ is a geodesic ($\gamma = \eta . \eta'$) passing through w in a k-face F.

- d = 2 The sum of the face angles about w is $< 2\pi$. We can "cut and flatten" S to find a locally shorter path.
- d > 2 η , η' determine a plane that intersects F at a single point, w. Project onto this plane to reduce to case d = 2.

View S as a d-dimensional smooth manifold, with v in the relative interior of a d-face F. Define the exponential map as before:

View S as a d-dimensional smooth manifold, with v in the relative interior of a d-face F. Define the exponential map as before:

Notice:

View S as a d-dimensional smooth manifold, with v in the relative interior of a d-face F. Define the exponential map as before:

Notice:

• We can view the *d*-face containing *v* as part of $T_v S$. Sometimes, we'll just write $T_F = aff(F) = T_v S$.

View S as a d-dimensional smooth manifold, with v in the relative interior of a d-face F. Define the exponential map as before:

Notice:

- We can view the *d*-face containing *v* as part of $T_v S$. Sometimes, we'll just write $T_F = aff(F) = T_v S$.
- Not every vector can be exponentiated.

Image Credit : Dave Glickenstein's GEOCAM project (of which I am a member).

Given adjacent *d*-faces F, F', we have a unique isometry that rotates T_F into $T_{F'}$.

• We can compose these maps and invert to unfold paths.

- We can compose these maps and invert to unfold paths.
- Different compositions might "overlap."

- We can compose these maps and invert to unfold paths.
- Different compositions might "overlap."
- We want to use these maps to understand exp.

- We can compose these maps and invert to unfold paths.
- Different compositions might "overlap."
- We want to use these maps to understand exp.
- We unfold a shortest path $v \to w \in F$ to get a point $\nu \in T_F$.

- We can compose these maps and invert to unfold paths.
- Different compositions might "overlap."
- We want to use these maps to understand exp.
- We unfold a shortest path $v \to w \in F$ to get a point $\nu \in T_F$.
- Do this for every *w* ∈ *F*, to obtain a set of **source images** src_{*F*}.

Problem: Where should we make cuts to use exp^{-1} to unfold *S*?

Problem: Where should we make cuts to use exp^{-1} to unfold *S*?

Solution:

Problem: Where should we make cuts to use exp^{-1} to unfold *S*?

Solution:

■ Fact: src_F is finite.

Problem: Where should we make cuts to use exp^{-1} to unfold *S*?

Solution:

- Fact: src_F is finite.
- Classify points in *F* by their nearest source image.

Problem: Where should we make cuts to use exp^{-1} to unfold *S*?

Solution:

- Fact: src_F is finite.
- Classify points in *F* by their nearest source image.
- To Be Shown: If w ∈ F is nearest to v ∈ src_F, this has implications for shortest paths v → w.

Image Credit: Chris H.

Rycroft

Image Credit: Chris H.

Rycroft

 Let U be a finite, nonempty set of points in ℝⁿ.

Image Credit: Chris H. Rycroft

- Let U be a finite, nonempty set of points in ℝⁿ.
- The **Voronoi diagram** determined by *U* is a cover of ℝⁿ by closed **Voronoi cells** *V*(*u*, *U*).

Image Credit: Chris H. Rycroft

- Let U be a finite, nonempty set of points in ℝⁿ.
- The **Voronoi diagram** determined by *U* is a cover of ℝⁿ by closed **Voronoi cells** *V*(*u*, *U*).
- V(u, U) ={ $x \in \mathbb{R}^n : d(x, u) \le d(x, u') \forall u' \in U$ }

Suppose *F* is a *d*-dimensional face of *S* and $\nu \in \operatorname{src}_F$. Then we have the following characterization of source images:

Suppose F is a d-dimensional face of S and $\nu \in \operatorname{src}_F$. Then we have the following characterization of source images:

Lemma (Generalized Mount's Lemma)

For any $w \in F$, $L([\nu, w]) \ge \mu(v, w)$ with equality if and only if some shortest path from v to w unfolds to $[\nu, w]$.

Suppose F is a d-dimensional face of S and $\nu \in \operatorname{src}_F$. Then we have the following characterization of source images:

Lemma (Generalized Mount's Lemma)

For any $w \in F$, $L([\nu, w]) \ge \mu(v, w)$ with equality if and only if some shortest path from v to w unfolds to $[\nu, w]$.

Suppose F is a d-dimensional face of S and $\nu \in \operatorname{src}_F$. Then we have the following characterization of source images:

Lemma (Generalized Mount's Lemma)

For any $w \in F$, $L([\nu, w]) \ge \mu(v, w)$ with equality if and only if some shortest path from v to w unfolds to $[\nu, w]$.

Q: Why is this nontrivial?

Suppose F is a d-dimensional face of S and $\nu \in \operatorname{src}_F$. Then we have the following characterization of source images:

Lemma (Generalized Mount's Lemma)

For any $w \in F$, $L([\nu, w]) \ge \mu(v, w)$ with equality if and only if some shortest path from v to w unfolds to $[\nu, w]$.

- Q: Why is this nontrivial?
- A: The source image ν might not have unfolded from a shortest path $v \rightarrow w$.

Image Credit: Ezra Miller and Igor Pak

Image Credit: Ezra Miller and Igor Pak

Q: What does Mount's Lemma say about the Voronoi cells formed by src_F?

Image Credit: Ezra Miller and Igor Pak

- Q: What does Mount's Lemma say about the Voronoi cells formed by src_F?
- A: Points in $F \cap V(\nu, \operatorname{src}_F)$ are **precisely** the points p so that a shortest path $v \to p$ unfolds to $[p, \nu]!$

Let V denote the set that collects the pieces of the Voronoi boundaries on each face.

Let V denote the set that collects the pieces of the Voronoi boundaries on each face.

■ *V* tells us how to "cut" *S* for a source unfolding!

Let V denote the set that collects the pieces of the Voronoi boundaries on each face.

- *V* tells us how to "cut" *S* for a source unfolding!
- V is the closure of the cut locus (the set of points with multiple shortest paths to v).

Let V denote the set that collects the pieces of the Voronoi boundaries on each face.

- *V* tells us how to "cut" *S* for a source unfolding!
- V is the closure of the cut locus (the set of points with multiple shortest paths to v).
- The algorithmic situation:

input $P \to \operatorname{src}_F \to V \to {\operatorname{cut points}} \to {\operatorname{an unfolding}}$

Proof Sketch:

Idea #1: Study the problem on T_F minus
Idea #1: Study the problem on T_F minus

points equidistant from a pair of source images and

Idea #1: Study the problem on T_F minus

- points equidistant from a pair of source images and
- points in (d-2)-faces.

Idea #1: Study the problem on T_F minus

- points equidistant from a pair of source images and
- points in (d-2)-faces.

- Idea #1: Study the problem on T_F minus
 - points equidistant from a pair of source images and
 - points in (d-2)-faces.
- This set is dense in T_F .

- Idea #1: Study the problem on T_F minus
 - points equidistant from a pair of source images and
 - points in (d-2)-faces.

This set is dense in T_F .

Idea #2: It suffices to prove the following:

If no shortest path $v \to w$ unfolds to $[\nu, w]$, then w is strictly closer to some other source image ν' .

Both $w \mapsto \mu(v, w)$ and $w \mapsto L[\nu, w]$ are continuous.

- Both $w \mapsto \mu(v, w)$ and $w \mapsto L[\nu, w]$ are continuous.
- We can extend the inequality to all of F, having proved it on a dense subset.

- Both $w \mapsto \mu(v, w)$ and $w \mapsto L[\nu, w]$ are continuous.
- We can extend the inequality to all of F, having proved it on a dense subset.
- If a shortest path $v \to w$ unfolds to $[\nu, w]$, then naturally $L[\nu, w] = \mu(v, w)$.

- Both $w \mapsto \mu(v, w)$ and $w \mapsto L[\nu, w]$ are continuous.
- We can extend the inequality to all of F, having proved it on a dense subset.
- If a shortest path $v \to w$ unfolds to $[\nu, w]$, then naturally $L[\nu, w] = \mu(v, w)$.

- Both $w \mapsto \mu(v, w)$ and $w \mapsto L[\nu, w]$ are continuous.
- We can extend the inequality to all of F, having proved it on a dense subset.
- If a shortest path $v \to w$ unfolds to $[\nu, w]$, then naturally $L[\nu, w] = \mu(v, w)$.

Suppose a line segment $[\nu, w]$ has minimal length among all line segments $[\tilde{\nu}, w]$:

- Both $w \mapsto \mu(v, w)$ and $w \mapsto L[\nu, w]$ are continuous.
- We can extend the inequality to all of F, having proved it on a dense subset.
- If a shortest path $v \to w$ unfolds to $[\nu, w]$, then naturally $L[\nu, w] = \mu(v, w)$.

Suppose a line segment $[\nu, w]$ has minimal length among all line segments $[\tilde{\nu}, w]$:

• $[\nu, w]$ unfolds from some **geodesic** γ .

- Both $w \mapsto \mu(v, w)$ and $w \mapsto L[\nu, w]$ are continuous.
- We can extend the inequality to all of F, having proved it on a dense subset.
- If a shortest path $v \to w$ unfolds to $[\nu, w]$, then naturally $L[\nu, w] = \mu(v, w)$.

Suppose a line segment $[\nu, w]$ has minimal length among all line segments $[\tilde{\nu}, w]$:

• $[\nu, w]$ unfolds from some **geodesic** γ .

$$L(\gamma) = L([\nu, w]) \leq \min_{\tilde{\nu} \in \operatorname{src}_F} L[\tilde{\nu}, w] = \mu(\nu, w).$$

- Both $w \mapsto \mu(v, w)$ and $w \mapsto L[\nu, w]$ are continuous.
- We can extend the inequality to all of F, having proved it on a dense subset.
- If a shortest path $v \to w$ unfolds to $[\nu, w]$, then naturally $L[\nu, w] = \mu(v, w)$.

Suppose a line segment $[\nu, w]$ has minimal length among all line segments $[\tilde{\nu}, w]$:

• $[\nu, w]$ unfolds from some **geodesic** γ .

•
$$L(\gamma) = L([\nu, w]) \leq \min_{\tilde{\nu} \in \operatorname{src}_F} L[\tilde{\nu}, w] = \mu(\nu, w).$$

• So γ is actually a shortest path.

Consider the set $U_v \subset T_v S$ of vectors that may be exponentiated.

Consider the set $U_v \subset T_v S$ of vectors that may be exponentiated. Let C_v denote the cut locus for source point v. Check

• $\overline{U_v}$ and $\overline{C_v}$ are a polyhedral sets.

- $\overline{U_v}$ and $\overline{C_v}$ are a polyhedral sets.
- $S \setminus \overline{C_{\nu}}$ is homeomorphic to a *d*-ball.

- $\overline{U_v}$ and $\overline{C_v}$ are a polyhedral sets.
- $S \setminus \overline{C_{\nu}}$ is homeomorphic to a *d*-ball.
- exp is piecewise linear and surjective onto S.

- $\overline{U_v}$ and $\overline{C_v}$ are a polyhedral sets.
- $S \setminus \overline{C_{\nu}}$ is homeomorphic to a *d*-ball.
- exp is piecewise linear and surjective onto S.
- exp is an isometry onto $S \setminus \overline{C_{\nu}}$.

- $\overline{U_v}$ and $\overline{C_v}$ are a polyhedral sets.
- $S \setminus \overline{C_{\nu}}$ is homeomorphic to a *d*-ball.
- exp is piecewise linear and surjective onto S.
- exp is an isometry onto $S \setminus \overline{C_{\nu}}$.

Consider the set $U_v \subset T_v S$ of vectors that may be exponentiated. Let C_v denote the cut locus for source point v. Check

- $\overline{U_{\nu}}$ and $\overline{C_{\nu}}$ are a polyhedral sets.
- $S \setminus \overline{C_{\nu}}$ is homeomorphic to a *d*-ball.
- exp is piecewise linear and surjective onto S.
- exp is an isometry onto $S \setminus \overline{C_{\nu}}$.

With these results gathered, it isn't hard to show $\exp^{-1}: S \setminus C_v \to T_v S$ is an unfolding map.

■ How can one deal with a non-convex polytope *P*?

- How can one deal with a non-convex polytope *P*?
- How can one compute the source images?

- How can one deal with a non-convex polytope P?
- How can one compute the source images?
- Can one characterize the number of source images (asymptotically)?

References

Miller, Ezra and Igor Pak. *Metric combinatorics of convex polyhedra: cut loci and nonoverlapping unfoldings*, Discrete and Computational Geometry 39 (2008), no. 1-3, 339-388.

Ziegler, Günter M. *Lectures on Polytopes*, Graduate Texts in Mathematics 152, Springer-Verlag New York 1995, Revised sixth printing 2006.

Thanks!

Shortest paths from v avoid cut points

A **cut point** is a point with multiple shortest paths to v.

Shortest paths from v avoid cut points

A **cut point** is a point with multiple shortest paths to v.

A path through a cut point *c* can be shortened by choosing one of the shortest paths $v \rightarrow c$ and then "cutting the corner."

All (d-2)-faces are contained in the cut locus.

Plan: Show each point in a (d - 2)-face F is a limit point of C_v . When d = 2:

All (d-2)-faces are contained in the cut locus.

When d > 2:
When d > 2:

• Look at paths in a "tube" around the path.

When d > 2:

- Look at paths in a "tube" around the path.
- The face angles around F sum to less than 2π .

When d > 2:

- Look at paths in a "tube" around the path.
- The face angles around F sum to less than 2π .
- A neighborhood of *F* looks like $\mathbb{R}^{d-2} \times \{\text{polyhedral 2D cone}\}$.

When d > 2:

- Look at paths in a "tube" around the path.
- The face angles around F sum to less than 2π .
- A neighborhood of F looks like $\mathbb{R}^{d-2} \times \{\text{polyhedral 2D cone}\}$.
- Use this characterization to find cut points near w.