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Introduction Background Geodesics on Polytopes Mount’s Lemma and the Cut Locus Source Unfolding Conclusion

Polytopes and their Boundaries

Today I’ll discuss part of a paper by Ezra Miller and Igor Pak.

Their objects of study are polytopes. These are:

Convex, bounded subsets of Rn.

Determined by an intersection of finitely many half-spaces.

Conventions:

P ⊂ Rd+1 denotes a polytope.

S := ∂P.
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Polytopes and their Boundaries

In their paper, Miller and Pak investigate unfoldings of polytopes’
boundaries. These are:

Flat Riemannian d-manifolds with “singularities.”

A “gluing” of some number of d-dimensional polytopes.

Questions:

How to visualize and understand S?

How can one deal with S computationally?
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Overview

1 Background

(a) Polytope Combinatorics
(b) Polytope Geometry
(c) Riemannian Geometry

2 Geodesics on Polytopes

3 Mount’s Lemma and the Cut Locus

4 Source Unfolding
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Dürer’s Conjecture

An open problem from the 1500’s:

Conjecture

Suppose P ⊂ R3 is a polytope. Then
∂P can be cut along its edges and
unfolded into a single connected subset
of the plane.

One of Dürer’s unfoldings.
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Dürer’s Conjecture

Image credit: Joseph O’Rourke

Convexity is necessary (see left).

Combinatorics: How are edges,
faces, and vertices connected?

Geometry: How do lengths, angles,
and areas affect the unfolding?
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Source Unfolding

Fix a source point v ∈ S . A source unfolding ϕ : S \ K → Rd is
a map such that:

ϕ is a local isometry.

K , the set of “cuts,” is comprised of a finite number of
(d − 1)-dimensional polyhedra.

In this model:

Cuts are allowed to “slice” through faces of S .

In our construction, shortest paths starting at v unfold to
straight lines.
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Source Unfolding

We’ll show every convex polytope has a source unfolding.

Applications:

Robotics

Optimization — ϕ records shortest paths from the source
point to any other point in S (similar to Dijkstra’s algorithm).
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Example: A Cube

Edge and source unfoldings of a cube.

Image Credit: Ezra Miller and Igor Pak
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Example: A Hypercube

A “stereographic projection” of a hypercube

and a source unfolding.

Image Credit: John Baez/Creative Commons (left)
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Polytopes

Q: How are polytopes specified?

A: Basically, irredundant systems of linear inequalities (Ax ≤ b).

Q: What “standard” tools are available for understanding
polytopes?

A: Linear algebra, lattice theory, and techniques from linear
programming.
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Visualizing Polytopes

Here, however, a word of warning may be in order: do
not try to visualize n-dimensional objects for n ≥ 4.
Such an effort is not only doomed to failure—it may be
dangerous to your mental health. (If you do succeed,
then you are in trouble.)

—V. Chvátal
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Polytope Combinatorics

Proposition (Diamond Property for Face
Containments)

Suppose F ⊃ V are k and (k − 2)-dimensional faces
respectively. There exist exactly two
(k − 1)-dimensional faces E ,E ′ so that
V ⊆ E ,E ′ ⊆ F .

F

E′E

V

Examples: P ⊆ R3

Exactly two edges of a face contain a given vertex.

When two faces meet, they do so along exactly one edge.
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Polytope Geometry

From R3: The sum of the face angles around a vertex is less than
2π.

Using the diamond property, we can define the angle that a k-face
forms with a (k − 2)-face.

Suppose V is a (d − 2)-face.

∑{face angles about V } < 2π.

If x ∈ relintV , there is a neighborhood of x isometric to a
neighborhood of Rd−2 × C , C a polyhedral cone (dimension
2).
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Riemannian Geometry

A Riemannian manifold is a smooth manifold M equipped with a
symmetric, positive-definite 2-tensor field g .

This yields:

an inner product on each tangent space,

notions of length and angles,

geodesics (paths which are locally shortest paths), and

the exponential map exp : E → M, E ⊆ TpM.

To find exp(v):

(i) Take the geodesic γ traveling through p in the direction
specified by v .

(ii) Follow γ for arc length ‖v‖. The endpoint is exp(v).

(iii) If you can’t do (ii), then v /∈ E .
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Riemannian Geometry — The Exponential Map

p
S2 :

TpS
2:

p

TpC:

C:
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Characterizing Geodesics

We need: A combinatorial characterization of shortest paths that
begin in the relative interior of a d-face.

Outline:

Geodesics in Rn are straight lines.

A shortest path intersects a face in at most a line segment.

Geodesics can’t pass through k-faces, k ≤ d − 2.

A shortest path starting inside a d-face intersects
(d − 1)-faces in at most one point.

Conclusion: A shortest paths γ is specified by its endpoints and
the sequence of d-faces it traverses.
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Geodesics avoid k-faces, k ≤ d − 2

Suppose γ is a geodesic (γ = η.η′) passing through w in a k-face
F .

O

η′η

w

ϕ

η′

η

η

θ

η′′

d = 2 The sum of the face angles about w is < 2π. We can “cut
and flatten” S to find a locally shorter path.

d > 2 η, η′ determine a plane that intersects F at a single point, w .
Project onto this plane to reduce to case d = 2.
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Exponential Maps for Polytopes

View S as a d-dimensional smooth manifold, with v in the relative
interior of a d-face F . Define the exponential map as before:

v

e2

e1

Notice:

We can view the d-face containing v as part of TvS .
Sometimes, we’ll just write TF = aff(F ) = TvS .

Not every vector can be exponentiated.
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Exponential Maps for Polytopes

Image Credit : Dave Glickenstein’s GEOCAM project (of which I am a member).
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Exponential Maps for Polytopes

Given adjacent d-faces F ,F ′, we have a unique isometry that
rotates TF into TF ′ .

We can compose these maps and invert to unfold paths.

Different compositions might “overlap.”

We want to use these maps to understand exp.

We unfold a shortest path v → w ∈ F to get a point ν ∈ TF .

Do this for every w ∈ F , to obtain a set of source images
srcF .

21
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Source Images

Problem: Where should we make cuts to use exp−1 to unfold S?

Solution:

Fact: srcF is finite.

Classify points in F by their nearest source image.

To Be Shown: If w ∈ F is nearest to ν ∈ srcF , this has
implications for shortest paths v → w .

22
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Voronoi Diagrams

Image Credit: Chris H.

Rycroft

Let U be a finite, nonempty set of points
in Rn.

The Voronoi diagram determined by U
is a cover of Rn by closed Voronoi cells
V (u,U).

V (u,U) =
{x ∈ Rn : d(x , u) ≤ d(x , u′)∀u′ ∈ U}

23



Introduction Background Geodesics on Polytopes Mount’s Lemma and the Cut Locus Source Unfolding Conclusion

Voronoi Diagrams

Image Credit: Chris H.

Rycroft

Let U be a finite, nonempty set of points
in Rn.

The Voronoi diagram determined by U
is a cover of Rn by closed Voronoi cells
V (u,U).

V (u,U) =
{x ∈ Rn : d(x , u) ≤ d(x , u′) ∀u′ ∈ U}

23



Introduction Background Geodesics on Polytopes Mount’s Lemma and the Cut Locus Source Unfolding Conclusion

Voronoi Diagrams

Image Credit: Chris H.

Rycroft

Let U be a finite, nonempty set of points
in Rn.

The Voronoi diagram determined by U
is a cover of Rn by closed Voronoi cells
V (u,U).

V (u,U) =
{x ∈ Rn : d(x , u) ≤ d(x , u′) ∀u′ ∈ U}

23



Introduction Background Geodesics on Polytopes Mount’s Lemma and the Cut Locus Source Unfolding Conclusion

Voronoi Diagrams

Image Credit: Chris H.

Rycroft

Let U be a finite, nonempty set of points
in Rn.

The Voronoi diagram determined by U
is a cover of Rn by closed Voronoi cells
V (u,U).

V (u,U) =
{x ∈ Rn : d(x , u) ≤ d(x , u′) ∀u′ ∈ U}

23



Introduction Background Geodesics on Polytopes Mount’s Lemma and the Cut Locus Source Unfolding Conclusion

Mount’s Lemma

Suppose F is a d-dimensional face of S and ν ∈ srcF . Then we
have the following characterization of source images:

Lemma (Generalized Mount’s Lemma)

For any w ∈ F , L([ν,w ]) ≥ µ(v ,w) with equality if and only if
some shortest path from v to w unfolds to [ν,w ].

Q: Why is this nontrivial?

A: The source image ν might not have unfolded from a shortest
path v → w .

24
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Mount’s Lemma

Image Credit: Ezra Miller and Igor Pak

Q: What does Mount’s Lemma say about the Voronoi cells
formed by srcF ?

A: Points in F ∩ V (ν, srcF ) are precisely the points p so that a
shortest path v → p unfolds to [p, ν]!
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Mount’s Lemma

Let V denote the set that collects the pieces of the Voronoi
boundaries on each face.

V tells us how to “cut” S for a source unfolding!

V is the closure of the cut locus (the set of points with
multiple shortest paths to v).

The algorithmic situation:

input P → srcF → V → {cut points} → an unfolding
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Proof Sketch:

Idea #1: Study the problem on TF minus

points equidistant from a pair of source images and

points in (d − 2)-faces.

This set is dense in TF .

Idea #2: It suffices to prove the following:

If no shortest path v → w unfolds to [ν,w ], then w is
strictly closer to some other source image ν ′.

27
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Proof Sketch:

F
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w

ν
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w
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w
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x

x′

w

O

ν ′

ν

H

F

TF

x

x′

w

O

ν ′

ν

H

∀y ∈ O \ x′ : L[ν, y] > µ(y, v)
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Proof Sketch:

Both w 7→ µ(v ,w) and w 7→ L[ν,w ] are continuous.

We can extend the inequality to all of F , having proved it on
a dense subset.

If a shortest path v → w unfolds to [ν,w ], then naturally
L[ν,w ] = µ(v ,w).

Suppose a line segment [ν,w ] has minimal length among all line
segments [ν̃,w ]:

[ν,w ] unfolds from some geodesic γ.

L(γ) = L([ν,w ]) ≤ min
ν̃∈srcF

L[ν̃,w ] = µ(v ,w).

So γ is actually a shortest path.
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An Unfolding from the Exponential Map

Consider the set Uv ⊂ TvS of vectors that may be exponentiated.

Let Cv denote the cut locus for source point v . Check

Uv and Cv are a polyhedral sets.

S \ Cv is homeomorphic to a d-ball.

exp is piecewise linear and surjective onto S .

exp is an isometry onto S \ Cv .

With these results gathered, it isn’t hard to show
exp−1 : S \ Cv → TvS is an unfolding map.

30



Introduction Background Geodesics on Polytopes Mount’s Lemma and the Cut Locus Source Unfolding Conclusion

An Unfolding from the Exponential Map

Consider the set Uv ⊂ TvS of vectors that may be exponentiated.
Let Cv denote the cut locus for source point v . Check

Uv and Cv are a polyhedral sets.

S \ Cv is homeomorphic to a d-ball.

exp is piecewise linear and surjective onto S .

exp is an isometry onto S \ Cv .

With these results gathered, it isn’t hard to show
exp−1 : S \ Cv → TvS is an unfolding map.

30



Introduction Background Geodesics on Polytopes Mount’s Lemma and the Cut Locus Source Unfolding Conclusion

An Unfolding from the Exponential Map

Consider the set Uv ⊂ TvS of vectors that may be exponentiated.
Let Cv denote the cut locus for source point v . Check

Uv and Cv are a polyhedral sets.

S \ Cv is homeomorphic to a d-ball.

exp is piecewise linear and surjective onto S .

exp is an isometry onto S \ Cv .

With these results gathered, it isn’t hard to show
exp−1 : S \ Cv → TvS is an unfolding map.

30



Introduction Background Geodesics on Polytopes Mount’s Lemma and the Cut Locus Source Unfolding Conclusion

An Unfolding from the Exponential Map

Consider the set Uv ⊂ TvS of vectors that may be exponentiated.
Let Cv denote the cut locus for source point v . Check

Uv and Cv are a polyhedral sets.

S \ Cv is homeomorphic to a d-ball.

exp is piecewise linear and surjective onto S .

exp is an isometry onto S \ Cv .

With these results gathered, it isn’t hard to show
exp−1 : S \ Cv → TvS is an unfolding map.

30



Introduction Background Geodesics on Polytopes Mount’s Lemma and the Cut Locus Source Unfolding Conclusion

An Unfolding from the Exponential Map

Consider the set Uv ⊂ TvS of vectors that may be exponentiated.
Let Cv denote the cut locus for source point v . Check

Uv and Cv are a polyhedral sets.

S \ Cv is homeomorphic to a d-ball.

exp is piecewise linear and surjective onto S .

exp is an isometry onto S \ Cv .

With these results gathered, it isn’t hard to show
exp−1 : S \ Cv → TvS is an unfolding map.

30



Introduction Background Geodesics on Polytopes Mount’s Lemma and the Cut Locus Source Unfolding Conclusion

An Unfolding from the Exponential Map

Consider the set Uv ⊂ TvS of vectors that may be exponentiated.
Let Cv denote the cut locus for source point v . Check

Uv and Cv are a polyhedral sets.

S \ Cv is homeomorphic to a d-ball.

exp is piecewise linear and surjective onto S .

exp is an isometry onto S \ Cv .

With these results gathered, it isn’t hard to show
exp−1 : S \ Cv → TvS is an unfolding map.

30



Introduction Background Geodesics on Polytopes Mount’s Lemma and the Cut Locus Source Unfolding Conclusion

An Unfolding from the Exponential Map

Consider the set Uv ⊂ TvS of vectors that may be exponentiated.
Let Cv denote the cut locus for source point v . Check

Uv and Cv are a polyhedral sets.

S \ Cv is homeomorphic to a d-ball.

exp is piecewise linear and surjective onto S .

exp is an isometry onto S \ Cv .

With these results gathered, it isn’t hard to show
exp−1 : S \ Cv → TvS is an unfolding map.

30



Introduction Background Geodesics on Polytopes Mount’s Lemma and the Cut Locus Source Unfolding Conclusion

An Unfolding from the Exponential Map

Consider the set Uv ⊂ TvS of vectors that may be exponentiated.
Let Cv denote the cut locus for source point v . Check

Uv and Cv are a polyhedral sets.

S \ Cv is homeomorphic to a d-ball.

exp is piecewise linear and surjective onto S .

exp is an isometry onto S \ Cv .

With these results gathered, it isn’t hard to show
exp−1 : S \ Cv → TvS is an unfolding map.

30



Introduction Background Geodesics on Polytopes Mount’s Lemma and the Cut Locus Source Unfolding Conclusion

Further Questions

How can one deal with a non-convex polytope P?

How can one compute the source images?

Can one characterize the number of source images
(asymptotically)?
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Shortest paths from v avoid cut points

A cut point is a point with multiple shortest paths to v .

v

x
w

c

η′′

η

η′

θ

ε

A path through a cut point c can be shortened by choosing one of
the shortest paths v → c and then “cutting the corner.”
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All (d − 2)-faces are contained in the cut locus.

Plan: Show each point in a (d − 2)-face F is a limit point of Cv .
When d = 2:

O

η

w

η

η

θ

v
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All (d − 2)-faces are contained in the cut locus.

When d > 2:

Look at paths in a “tube” around the path.

The face angles around F sum to less than 2π.

A neighborhood of F looks like Rd−2 × {polyhedral 2D cone}.
Use this characterization to find cut points near w .
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