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1 Introduction

Recent years have marked a sharp increase in the number of ways in which
people interact with computers. Where the keyboard and mouse were once the
primary interfaces for controlling a computer, users now utilize touchscreens,
infrared cameras (like Microsoft’s Kinect), and accelerometers (for example,
within the iPhone) to interact with their technology. In light of these changes
and the proliferation of small cameras in many phones and tablets, human-
computer interface researchers have investigated the possibility of implementing
a keyboard-style interface using a camera as a substitute for actual keyboard
hardware.

Broadly speaking, these researchers envision the following scenario: A cam-
era observes the user’s hands, which rest on a flat surface. The camera may
observe the hands from above the surface, or at an angle.1 The virtual key-
board’s software analyzes those images in real-time to determine the sequence
of keystrokes chosen by the user. These researchers envision several applications
for this technology:

• In some countries (for example, India), users speak many different lan-
guages, which makes producing physical keyboards for many different or-
thographies expensive. A camera-based keyboard can easily support many
languages, as is discussed in [1].

• Smart-phone and tablet users may occasionally want to use a full-sized
keyboard with their device, but are unwilling to carry a physical keyboard.
Since most mobile devices are equipped with a camera, a camera-based
keyboard could provide a software-based solution for this problem.

The objective of this semester project was to implement a virtual keyboard
using the image analysis techniques described in [1], [2], and [3]. In the system
we implemented, a single low-quality camera captures RGB images of a user’s

1One might envision that the camera sits at one end of a phone/tablet, which has been
propped up in front of the user.
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hands, which touch a patterned surface, or keyboard-mat, in order to select
keystrokes. Based upon this information and an initial calibration image of the
keyboard-mat (Figure 3), the system produces a discrete sequence of keystrokes
that can be used to control other software. We examine the performance of
each of the three main phases of image analysis and compare the efficacy of two
techniques for locating the user’s fingertips in an image. We also analyze the
degree to which our system is sensitive to changes in lighting and frame rate.2

2 Phases of Touch Detection, and their Imple-
mentation

In this section, we describe the image analysis techniques used to convert the
user’s surface-touches into keystrokes. Most state-of-the-art camera-based vir-
tual keyboard schemes, including [1], [2], and [3], are implemented using the
following sequence of image analysis techniques:

(a) The system’s camera captures an image I for processing. By performing skin
segmentation on I, we obtain a binary image with a region H representing
the hand(s) in the scene.

(b) H is analyzed to determine the locations of the user’s fingertips. The ref-
erences listed above determine contours that parameterize the boundary of
H. They associate fingertips with the points on the contours that optimize
certain geometric quantities (for example, curvature). We consider two of
these geometric approaches to finding the fingertips and compare their per-
formance.

(c) Given the estimated fingertip positions, one must calculate which fingertips
are touching the keyboard’s keys. [1] and [2] propose a technique called
shadow analysis to solve this problem.

(d) To map touch points to key presses, we assume the keys of the virtual
keyboard are described as rectangles in R2. We assume the layout of the
keyboard is known at compile time and the keyboard-mat has control points
from which we can derive a perspective correction transformation. We then
apply a simple formula to convert the keyboard-space coordinates of the
touch points to keypresses.

Figure 1 provides an example of phases (a)-(c).

2.1 Determining the Hand Region and its Boundary Con-
tours

Our first step in processing an image I is to locate contours that correspond to
the boundary of the hand(s) in the scene. We locate the user’s hands using a

2In lecture, it was mentioned that this report should discuss what the author learned in
the course of his project. This appears in Section 4.
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simple skin segmentation procedure described in [4].
To apply the segmentation procedure, the image must be represented in

YCrCb color coordinates. A pixel with color coordinates (Y,Cr, Cb) is deter-
mined to be a skin pixel if:

133 ≤ Cr ≤ 173 and 77 ≤ Cb ≤ 127

In [4], this thresholding procedure is presented as part of a larger face-recognition
scheme. They report that thresholding can be used successfully on its own,
provided the background color is sufficiently different from the user’s skin color
and the lighting conditions are reasonable. This is the situation in our project,
where the background is a blue keyboard-mat. The authors of [4] report that
their thresholding procedure is effective on a variety of skin colors, in part due
to their use of the YCbCr colorspace.

We observed that these thresholds can sometimes fail to record fingernail
pixels as part of the hand, but this can be overcome by relaxing the inequalities
to:

128 ≤ Cr ≤ 178 and 72 ≤ Cb ≤ 132

Thresholding often produces a binary image containing small artifacts. We
remove these using morphological opening, which produces an image I ′ with a
small number of 4-connected components. We calculate the connected compo-
nents of I ′, and delete those with fewer than 500 pixels (the regions correspond-
ing to the user’s hands contains far more pixels).

For each remaining connected component C of I ′, we calculate a contour
(a list of pixel coordinates) that parameterize the boundary of C. A pixel in
C is a boundary pixel if any of its 4-connected neighbors is not in C, and the
boundary of C is simply the union of the boundary pixels of C. Since we
wish only to detect the boundaries of hands, there is no loss in assuming each
connected component is simply connected (i.e. there are no “holes” within C).
The algorithm for computing the boundary contour of C is relatively simple,
so we will only outline it: Initialize a pointer to point to a pixel in C and then
move the pointer in one of the coordinate directions until a boundary pixel
p0 is found. Record this boundary pixel’s location, and follow the boundary
counterclockwise (recording the locations of the pixels visited) until the pointer
returns to p0.3

There is another approach for determining the boundary of a region, based
on morphological operations. Given a connected component of C, we could find
the boundary by eroding C with a small square structuring element and then
subtracting this eroded image from C. However, later processing steps require
information concerning which pixels make up the boundary and in what order
they are encountered as the boundary is traversed counterclockwise. Thus,
regardless of whether we apply the described morphological operations, we are
obliged to iterate over the pixels in the boundary of C and record them in a list.

3Remark: This is the same algorithm used to solve simply connected mazes.
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Also, the morphological operations we described are not guaranteed to produce
a contiguous one-pixel wide boundary, so they would not substantially simplify
our boundary-traversal procedure. For these reasons we decided to omit the
morphological operations entirely.

2.2 Fingertip Detection

In this step, we estimate the locations of the user’s fingertips (in image-space)
based on geometrical features of the contours and regions obtained from the last
step.

We represent a contour γ̃ as a sequence of positions {p1 = (x1, y1), p2 =
(x2, y2), . . .} in image-space. Given a contour, one can derive several other
sequences of geometrical significance and use these to locate the fingertips.

The previous processing step gives us a contour γ̃ consisting of pixel locations
pi such that the Euclidean distance between pi and pi+1 is 1 for all i, and
the angle θi between the displacement vectors pi+1 − pi and pi−1 − pi is in
{−π/2, 0, π/2, π}. This angular information does not give a very good idea of
how the contour bends around the hand, so we consider a subsequence γ in
which the points of the contour are spaced further apart. In experiments, we
took γ to be every tenth point of γ̃. We then define a sequence of angles θi (in
(−π, π]) from γ as we did with γ̃, by considering the angle between displacement
vectors.

A second important property we derive from γ is curvature. Curvature
can most easily be understood in the situation where γ is parameterized by
arclength. In this situation, the acceleration vector γ′′(t) is always perpendicular
to the contour. The curvature K(t) is simply the magnitude of γ′′(t), with larger
values indicating that the curve is bending more severely. The data we use to
represent γ does not parameterize the contour by arclength, but the authors of
[3] report there is still a formula for calculating K(t)

K(t) =
det(γ′(t), γ′′(t))2

‖γ′(t)‖3

which they discretize, using the data γ = {pi}, to obtain:

vi = pi+1 − pi−1
ai = vi+1 − vi−1

Ki =
det(vi, ai)

2

‖vi‖3

Given this geometrical data, we have two approaches for locating the finger-
tips in an image. The first approach is to calculate the sequence of angles θi, and
associate fingertips with points where θi is maximized. The second approach
is to calculate the curvature values Ki and associate fingertips with positions
where Ki is maximized. Naturally, both approaches require non-maximum sup-
pression or other post-processing to be effective. Both of these approaches are
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described in [3] and we compare their performance. Figure 2 provides an exam-
ple of both detection schemes.

2.3 Touch Detection

In this phase of processing, we are given as input the estimated positions of
the user’s fingertips and must output which of those tips are estimated to be in
contact with the keyboard-mat. We used a technique called shadow analysis,
described in [1], to solve this problem.

The first step in shadow analysis is to extract the shadow of the user’s
hands from the scene. We accomplish this by thresholding the image in 8-bit
HLS colorspace coordinates. From examining many test images, we found that
a threshold of L < 0.30 ·255 produced a binary image S that clearly depicts the
shadows in the image.4

For each fingertip position p, we examine square 20× 20 neighborhood of p
in the binary image S. If the percentage of shadow pixels in the neighborhood
is smaller than a fixed percentage s, we conclude that the fingertip is in contact
with the table. We refer to s as the shadow threshold. In the experimental
section, we investigate the effect of varying this threshold.

2.4 Mapping Touch Points to Keystrokes

The previous phase of processing yields a list of image-space coordinates that
estimate where the user has touched the keyboard. In this section, we describe
how we translate those image-space coordinates to rectilinear keyboard-space
coordinates, and then to actual keystrokes, correcting for perspective. The
perspective correction technique we used did not appear in any reference we
read, instead we derived it from ideas in the lecture on stereo vision.

An image captured by the camera in our system is a perspective projection
of a three dimensional scene. Our system assumes the layout of the keyboard is
known at compile time and that the keyboard-mat given to the user has several
control points printed on it, arranged in a rectangle of known height and width.
For test purposes, our keyboard consisted of a square-shaped grid with 25 keys,
as depicted in Figure 3.

We designate the four control points c0, c1, c2, c3. Each point ci = (xi, yi, zi)
is a point in the plane of the keyboard mat. We assume our camera is a pin-
hole camera of focal length d, and carry out all of our calculations in “camera
coordinates”, so that the camera’s aperture is at the origin with its optical axis
pointing in the −z direction, with no rotation about the z-axis. For simplicity,
we assume all of our length-valued variables have the same units.

To obtain the positions of the control-points in image-space, we begin by
thresholding an 8-bit RGB test image captured at the beginning of processing
with the inequality B < 100. The resulting binary image has four connected
components, one for each control point. For each connected component, we

4It would be easy to allow users to adjust this threshold at runtime, so we decided not to
worry about the fact that our chosen threshold depends on our experimental setup.
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Figure 3: The keyboard-mat used for our tests. The black disks indicate control
points.

calculate its center of mass, and take that to be the position of the corresponding
control point. We use a simple system of inequalities to assign each control point
to the appropriate variable ci. We will denote the image-space coordinates of ci
by (ui, vi). Hence:

ui = −dxi
zi

vi = −dyi
zi

We assume that the keyboard-mat is aligned so that the vectors c1 − c0
and c2 − c3 are parallel to the x-axis with length w and the vectors c3 − c0
and c2 − c1 are perpendicular to the x-axis, with length h. Thus, under the
perspective projection, the keyboard-mat looks like the image in Figure 4.

c0 c1

c3 c2

Figure 4: An example of the keyboard mat, under perspective projection

Suppose (u, v) are the image coordinates of a point c = (x, y, z) on the
keyboard mat. When we speak of the keyboard-space coordinates of that point,
we mean s, t ∈ R so that:

c = c0 + t(c1 − c0) + s(c3 − c0)
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In order to convert image-space coordinates to keyboard-space coordinates, we
must solve for s and t, in terms of (ui, vi), (u, v), h, and w. Because of the
assumptions on the ci we may rewrite the equation above as:xy

z

 =

x0y0
z0

 + t

w0
0

 + s

 0
h

z3 − z0


Hence:

u = −dx
z

= −d x0 + tw

z0 + s(z3 − z0)
(1)

v = −dy
z

= −d y0 + sh

z0 + s(z3 − z0)
(2)

One difficulty is that we do not know z or zi for any i. However because
c1 − c0 are parallel to the x-axis we have:

u1 − u0 = −dx1
z0

+ d
x0
z0

= −d w
z0

z0
−d

=
w

u1 − u0

The quantity z0/(−d) is so useful that we will name it explicitly

q0 :=
z0
−d

=
w

u1 − u0
q3 :=

z3
−d

=
w

u2 − u3

Using this formula, we can rewrite Equations 1 and 2 as:

u(q0 + s(q3 − q0)) = q0u0 + tw

v(q0 + s(q3 − q0)) = q0u0 + sh

and solve for s, t to get the formulae:

s =
vq0 − v0q0

v(q0 − q3) + h

t =
1

w
(u(q0 + s(q3 − q0))− q0u0)

It might appear that in order for the units to come out correctly, we would
need to know the width of a one pixel sensor element in our camera. However,
observe that everywhere a u or v variable appears in the formula above, it is
multiplied by a q variable. This has the effect that any conversion factor will
necessarily cancel out, so we do not need to know the width of a sensor element.
Similarly, one can see that the focal length d of the camera does not appear
anywhere; it is not needed to calculate s and t. Further analysis shows that
it is the ratio of h and w that is really important for using the above formula,
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not their exact values.5 Once we have the keyboard-coordinates of a point, we
assign it to a button identifier (a pair in {1, . . . , 5}×{1, . . . , 5}) by applying the
mapping (t, s) 7→ (b7tc, b7sc) and discarding output that does not fall within
our set of button identifiers.

3 Experimental Results

Detecting the user’s keystrokes means performing three tasks:

(i) Locating the user’s fingertips.

(ii) Detecting the shadows in a neighborhood of each fingertip.

(iii) Transforming the image coordinates of any touch-point to keyboard coor-
dinates so that it may be assigned to a key-press.

Error in any one step contributes to error in later steps. However, by choosing
our data carefully we can analyze how well our system performs steps (i) and
(iii) in isolation. In particular, we find that the transformations in step (iii) are
not a significant source of error compared to steps (i) and (ii).

3.1 Equipment Details and External Libraries

All of the experiments described in this section were carried out on a Dell
Inspiron 530S running Ubuntu 12.10. This computer has an Intel Core 2 Duo
CPU (2.40GHz) and 2.9 GiB of RAM. We captured video using a Logitech c920
webcam mounted to a frame that helped ensure the camera would be squarely
aligned with the keyboard-mat. The camera captured 8-bit BGR images at a
640×480 resolution, and was positioned approximately 30 centimeters from the
keyboard mat such that the angle between the optical axis of the camera and
the tabletop was approximately 60 degrees.

For experiments involving shadow analysis, lighting was an important con-
sideration. We used 14 watt, uncovered halogen bulbs to illuminate the scene,
suspended approximately 50 cm from the keyboard-mat.

We wrote all of the code used to carry out our experiments in Python. We
used Numpy and Scipy for three standard image analysis procedures: threshold-
ing, morphological operations, and connected component labeling. We used the
OpenCV (Open Computer Vision) library to retrieve images from our hardware
and encode/decode video.

3.2 Fingertip Detection Performance

In this section, we compare the performance of “angle based” and “curvature
based” fingertip detection. In our tests, both detectors were given identical
contours, generated by the procedures described in 2.1. We tested the detectors

5This is useful if one plans to produce copies of the same keyboard-mat at different scales.
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on a collection of 40 images displaying a total of 116 fingertips. For each image,
we manually determined the positions of the fingertips in the scene, and recorded
the results to a log file. For our purposes, a fingertip-position meant a pixel
location that appears at the very end of a finger (i.e. at the boundary of the
finger and the background) and is centered across the fingertip. Within an
image, each finger received exactly one fingertip label.

We scored a detector’s output P = {pi}Ni=1 against the true fingertip points
Q using the following procedure: For each q ∈ Q, we examined a neighborhood
N of radius 30 pixels about q. If P ∩N = ∅, we scored q as a false negative. If
the detector produced one or more points within the neighborhood, we selected
the closest point pi as a match for q, recorded the Euclidean (L2) distance
between pi and q, and removed pi from P so that it could not be paired with
another fingertip. In this case, q was counted as a true positive. Any point in
P that was not paired with a point in Q was recorded as a false positive. Then,
we plotted the resulting pairing between P and Q for human inspection.6 Thus,
each test yields two kinds of statistics: counts of the true/false positives and
false negatives as well as an L2 score that records how accurately our system
estimates the positions of the true positives.

The main difficulty a fingertip detector must overcome is that the orientation
of the hands in the scene may prevent the camera from recovering a useful
silhouette. For example:

• Knuckles can be inadvertently detected if fingers are curled.

• Fingers may shadow or occlude one another.

• If two fingers are close together (without overlapping) they may be seg-
mented as a single region with a boundary that makes it difficult to isolate
the tips.

For this reason, we divided our corpus into two parts. We placed in Dataset I
(22 images, 60 true fingertip points) those images that did not exhibit any of
the problems described above and placed the rest in Dataset II (18 images, 56
true fingertip points). Our results appear in Table 1.7

Any user interface imposes constraints upon the user. For example, touch
screen users know they cannot rest their hands on the screen as they type. The
images in Dataset I represent ideal conditions, where the user understands the
limitations of the keyboard interface. The images in Dataset II are meant to
give an idea of how well the system performs on “badly conditioned” inputs, so

6Using this plot, it is easy to discern which points are really true positives, false positives,
and false negatives, so that we may check the scoring system’s work. This is why we consider
the scoring system to be an acceptable compromise between keeping the testing software
relatively simple and automating our tests (so that many tests can be run).

7This table presents the True Positive (TP), False Positive (FP), and False Negative (FN)
counts for our detectors, but not the True Negative (TN) count. For the purposes of detecting
fingertips, virtually every pixel in the image will be correctly classified as a True Negative,
yielding counts in the millions, which is misleading when compared with the other counts.
This is also why we decided not to calculate the false positive rate (FN/(TN + FN)); since
TN is so large relative to FN, the false positive rate is always extremely close to 0.
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Table 1: Comparison of Fingertip Detectors
Dataset I (60 Points)

Detector True Mean L2 False False
Positives Distance Positives Negatives

(Pixels)
Angle Based 60 5.78 9 0

Curvature Based 58 5.05 4 2

Dataset II (56 Points)
Detector True Mean L2 False False

Positives Distance Positives Negatives
(Pixels)

Angle Based 52 4.43 20 4
Curvature Based 49 5.38 21 7

that one can see how much a user must adjust his habits to use our fingertip
detection system successfully.

Table 1 shows that the two detection methods display comparable perfor-
mance, which is not surprising considering that they measure the same geomet-
rical notion (bending of a curve) in different ways. On well-conditioned data,
the curvature-based fingertip detector made slightly fewer errors and estimated
the positions of the fingertips slightly more accurately (i.e., with smaller mean
L2 error) than the angle-based detector. However, the curvature-based detec-
tor also scored slightly worse on the ill-conditioned data. Given the similarities
in performance between the two schemes, we elected to use the angle-based
curvature detector in our other tests.

3.3 Keyboard Size and Imaging Geometry

In 2.4 we made several assumptions about the geometry of our imaging system
in order to calculate a transformation T from image coordinates to keyboard
coordinates. The programs we designed to perform our experiments superim-
pose horizontal and vertical lines on all video output from the camera, so that
the camera can be aligned with the keyboard-mat before each test. In this sec-
tion, we discuss whether the error that remains in our imaging geometry or the
size of the keyboard-mat affects the accuracy of our transformation from image
coordinates to keyboard coordinates.

We printed the keyboard-mat displayed in Figure 3 at four different scales,
such that the individual (square) buttons had side length 22 mm, 16 mm, 12 mm,
and 7 mm. For each keyboard, we prepared and manually labeled a collection of
50 images, in which a single finger selects one of the 25 buttons (each button is
selected twice in the images).8 Under these conditions, we found that our system

8In this configuration, we can be very sure that our system correctly labels the fingertip
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was able to correctly label all 50 of the images, for each of the four keyboard-
mats. From this we conclude that the true geometry of our imaging system is
sufficiently compatible with our assumptions, and neither the transformation
T nor the size of the keyboard-mat has a significant effect on our system’s
accuracy. In other words, the errors we will discuss in 3.4 arise because of errors
in fingertip detection and shadow analysis, and not error in the transformation
T .

3.4 Touch Detection Experiments

From an implementation perspective, shadow analysis is a very appealing tech-
nique for detecting whether the user is touching the keyboard mat. The tech-
nique is computationally inexpensive, does not require special hardware,9 and
can be applied on a frame-by-frame basis. However, shadow analysis requires
strong assumptions on the lighting conditions in the scene. Specifically, we
assume:

(a) There is a strong point-source light illuminating the scene, that produces
well defined shadows.

(b) The light source has been aligned with the camera, so that in the camera
coordinates defined in 2.4, it lies in the yz-plane, between (and above) the
camera and the user’s hands.

In this section, we discuss the consequences of violating these assumptions.
We adjusted our lighting conditions in several ways. First, we considered the

effect of shifting the point-source light so that it appears some distance to the
side of the keyboard mat, instead of directly above it, which shifts the shadows
in the scene. We also considered the effect of adding diffuse light, which has
the effect of weakening the shadows in the scene, and the effect of using only
diffuse light for illumination, which yields very weak shadows. Figure 5 provides
examples of these illumination conditions, for comparison.

For each of the five lighting conditions, we recorded a total of 50 images
(taking care to keep the hand poses the same between different lighting condi-
tions) with 50 fingertips to be classified as either touching or not touching the
keyboard-mat (25 touching, 25 not touching). In the cases where the fingertip
touched the keyboard-mat, the system needed to report the correct key in order
for the result to be scored as a true positive. For these experiments, we used a
20× 20 window around each fingertip point, with shadow threshold 0.15.

Table 2 summarizes our results, which clarify our lighting assumptions in
two ways. Our system performed acceptably on Dataset 2, so we can refine
assumption (b) by saying that the point source light does not need to be perfectly
aligned with the camera, so long as the shadows of the fingertips appear near
the fingertips. If the shadows are too far from the fingertips, as was the case

and whether it is in contact with the tabletop.
9For example the authors of [5] use a 3D range camera to determine distances to fingertips

and the keyboard-mat, so that touch detection is a matter of comparing distances.
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Table 2: Performance Under Different Lighting Conditions (50 Classifications
per Dataset)

Dataset True Pos. False Neg. False Pos. True Neg.
1. Assumed Illumination
Conditions

25 0 0 25

2. Point Source Light with
10 cm Shift

25 0 0 25

3. Point Source Light with
20 cm Shift

30 0 20 25

4. Point Source Light with
Diffuse Light

25 0 0 25

5. Diffuse Light Only 32 8 18 17

Table 3: Performance with Different Shadow Thresholds (100 Classifications
per Trial)

Shadow Threshold True Pos. False Neg. False Pos. True Neg.
10 % 22 49 0 29
15 % 57 14 0 29
20 % 68 3 0 29
25 % 69 2 0 29
30 % 69 2 0 29
35 % 69 2 2 27

in Dataset 3, shadow analysis has no hope of correctly discerning whether key-
presses occurred. Dataset 4 illustrates that our touch detection system performs
acceptably when the point-source light is not the only source of illumination.
For example, one can use this system in a room with standard overhead lighting,
as long as a strong point source light is the main source of light near the user’s
hands. On the other hand, Dataset 5 shows a strong point source light is
essential for obtaining a useful classification.

To perform shadow analysis, we select two parameters: the size of the square
neighborhoods we will inspect and the shadow threshold. We propose that the
first parameter, neighborhood size, should be dictated by the width of the user’s
fingers in the scene (in our case, 20 pixels). If the neighborhood is much larger,
pixels near the edge of the neighborhood could easily represent shadows that
have nothing to do with whether the fingertip in question contacts the tabletop.

We investigated the effect of the shadow threshold on our system’s perfor-
mance, so that we could better choose this parameter. In [1], the authors explain
that they chose their shadow threshold by considering “an extensive set of test
cases” but do not list their final threshold value. We manually labeled a dataset
of 50 images depicting 71 fingertips in contact with the keyboard-mat and 29
fingertips not in contact with the keyboard-mat. Table 3 lists the results of
applying shadow analysis to this data with different shadow thresholds.
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As both intuition and the data in Table 3 indicate, a smaller shadow thresh-
old makes it more difficult for a fingertip to be classified as touching the keyboard-
mat. Hence, a very low shadow threshold yields few false positives and many
false negatives. However, the shadow threshold may be increased substantially,
to around 35%, before the number of false positives increases. Based on the
table, a shadow threshold between 20% and 25% appears to deliver the best
performance.

3.5 Frame Rate

The frame rate of our system depends somewhat on our hardware choices. Log-
itech reports that their camera is capable of recording video at approximately
30 frames per second (fps) and our own tests agree with that statistic. Our main
virtual keyboard program consists of a loop in which we sample an image from
the camera, analyze it, and display any resulting button presses. The additional
time required to analyze the images means that our virtual keyboard system
captures an average of 10 frames per second. (For comparison, the authors of
[1] report their system runs at 3 fps, albeit on different hardware.)

We wished to determine the extent to which our program’s frame rate affects
its accuracy, since this determines how fast a user can type. To simulate different
frame rates, we recorded image sequences (at 30 fps) of hands typing, and then
ran our system on different subsequences of those frames. For example, to
determine the performance of our system at 5 fps, we would provide our program
with every sixth frame of the original 30 fps image sequence. In this way, we
examined how well the system performed at 5, 10, 15, and 30 fps.10

We recorded four different image sequences for our experiments. In sequence
V1 (32 seconds) an index finger presses each of the 25 keys on the keyboard
once. In sequence V2 (15 seconds) a pair of fingers alternate between pressing
two distinct keys, for a total of 10 key-presses. In sequence V3 (5 seconds), an
index finger presses a sequence of 5 keys rapidly. In sequence V4 (7 seconds),
a pair of fingers on the same hand rapidly presses a sequence of 8 keys on two
different rows.

Since the purpose of our experiment was to determine the effect of frame rate
on accuracy, in each video sequence we chose hand poses that would be relatively
easy for our system to accurately process. In this way, when the system fails
to identify a key-press it does so because it failed to observe a frame in which
a fingertip was sufficiently close to a key (and not because the system failed to
identify a fingertip entirely). For this reason, we observed no false positives and
report only the number of failed identifications in each experiment.

From an initial image sequence {Ij} sampled at 30 fps one can obtain several
distinct image sequences sampled at 5, 10, and 15 fps. For each dataset Vi,
we ran our tests on three subsequences sampled at 5 fps, three subsequences

10Most users type somewhere between 30-120 words per minute [6] (here a word means
a sequence of 5 characters). From this fact one can roughly estimate that the frame rate
should be 2 to 10 fps; hence, the frame rates we chose for our experiments are not completely
arbitrary.
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sampled at 10 fps, and two subsequences sampled at 15 fps. For each frame
rate, we report the average number of errors observed for those trials.

Table 4: System Performance with Different Frame Rates

Average Number of Errors
Frame Rate (fps)

Dataset (# Keystrokes) 5 10 15 30
V1 (25) 9.3 5.0 1.5 0.0
V2 (10) 3.0 0.0 0.0 0.0
V3 (5) 2.3 0.3 0.5 0.0
V4 (8) 4.0 3.3 1.0 0.0
All Datasets (47) 18.7 8.7 3.0 0.0

(38.9%) (18.1%) (6.3%) (0.00%)

The results of our experiment, summarized in Table 4, demonstrate that
the current frame rate our system provides (about 10 fps) is not satisfactory
and should likely be increased to at least 20 fps. The fact that our system
made no errors on the 30 fps image sequences and performed best on the V2
dataset (which featured the slowest rate of typing and longest keypress times)
particularly support this conclusion.

We implemented our system in an interpreted programming language (al-
beit, one with many fast C/C++ library calls), so converting the system to a
faster programming language like C++ is likely a reasonable way to significantly
increase frame rates. We also did not make use of parallel programming in our
implementation. For example, one might be able to achieve higher through-
put by dedicating one processor to each major step in the virtual keyboard’s
“pipeline”; that is, one processor extracts the hand region from the input im-
age, the next finds the boundary contour and locates the fingertips, and the last
processor determines touch points and maps them to keyboard coordinates.

4 Pedagogical Discussion

In this section we briefly discuss our reasons for selecting this topic as the term
project for ECE 532, and what was learned in the process of carrying out the
project.

The central goal of this project was to gain a better understanding of how
different image analysis techniques are used together to solve a larger, real-world
problem. The system we implemented utilizes several techniques discussed in
lecture, particularly thresholding, binary morphological operations, connected
component analysis, and ideas from stereo vision.

The references we considered outline the image analysis steps required to
implement a virtual keyboard, but leave some details to the reader. When we
reached an impasse implementing the steps described in our reference papers,
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we often had to consider three questions:

• Had we made a mistake in our implementation?

• Should we search the literature for a better technique for performing that
step?

• Should we try to carefully characterize the difficulties our system was
encountering, in the hope that the step described in our reference papers
could be mildly adjusted to overcome those difficulties?

When considering such questions, we learned it was crucial to have a robust
library of “utilities” that would allow us to display the data in every step in our
system. With the right plotting tools, virtually every problem became easy to
understand.

Implementing a virtual keyboard system gave us a better understanding of
the trade-offs one must consider when choosing image analysis techniques in the
context of a larger system. For example, an important first step in our system
is to perform a skin segmentation on an input image. Selecting a technique to
perform this segmentation meant balancing competing goals, particularly sim-
plicity of implementation, computation time, and quality of segmentation. Skin
segmentation by thresholding, as in 2.1, is easy to implement and runs quickly,
but only performs useful segmentations on a relatively limited class of images.
A more sophisticated thresholding scheme, like Kittler and Illingworth’s infor-
mation minimization procedure, might yield a more consistent segmentation, at
the cost of a more complicated implementation and longer runtime. As we saw
in the experimental section, both speed (which affects frame rate) and accuracy
(which affects the quality of the analysis we can perform in later steps) are
important considerations that must be balanced.

One major difficulty we faced in the course of this project was acquiring
the necessary data for testing our system. The papers we consulted, particu-
larly [1] and [2], give a reasonably clear outline for how to construct a virtual
keyboard system. However, they do not precisely explain what images are “well-
conditioned” input to their virtual keyboard systems. In the beginning phases
of the project, we recorded many ill-conditioned test images, so that we often
struggled to discern whether the techniques described in the papers were not
working or whether the data was problematic.

To put it another way, in the process of developing the software that imple-
ments our virtual keyboard system we had to concurrently develop an idea of
what “reasonable images” our system could process. For example:

• At one point we realized that our poor choice of lighting conditions and
background were causing the skin-segmentation procedures in [1] to fail.

• In another early experiment, we realized that glare and the very poor
quality of our first camera were producing test images with inaccurate
colors that could not be easily processed.
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We overcame these difficulties in part by upgrading to a camera with slightly
higher resolution (640× 480) and frame rate (30 fps). We also exercised greater
control over the lighting conditions of our experiments. We suspect the au-
thors of [1] and [2] constructed similar conditions in which to conduct their
experiments. Alternatively, perhaps we are simply unaware of standard “best
practices” for recording test data that are well known to computer-vision re-
searchers.11

5 Conclusion

In this project, we implemented a virtual keyboard following the steps described
in [1] and [2]. Though we achieved a frame rate and accuracy comparable to the
references we considered, our experiments show that a virtual keyboard system
based on shadow analysis has limitations.

Shadow analysis demands very strong assumptions about the lighting and
hand poses that will appear in virtual keyboard images. Unfortunately, as we
saw in Section 3, these demands are not necessarily rewarded with dependable
performance. We observed similar difficulties with fingertip identification. Both
curvature and contour-angle techniques can acceptably identify isolated finger-
tips, but do not deliver dependable performance when two fingers are merged
into a single region or when one finger occludes another. Either technique is
prone to assigning false-positives to finger-like objects, particularly knuckles.

We do not believe a truly useful virtual keyboard based on shadow analysis
could be incorporated into an existing mobile-computing technology (e.g. a
smartphone). To achieve widespread adoption, such a technology must have a
far lower rate of error and much weaker lighting assumptions. It is unclear how
one could guarantee the assumptions of shadow analysis are satisfied without
making burdensome demands on the user.

It would be interesting to know whether shadow analysis could be replaced
by a motion analysis technique, such as in [7]. For example, given the location
of a fingertip in several consecutive images, one could calculate the fingertip’s
velocity and identify key-presses as by considering when the fingertip’s velocity
reverses direction. Naturally, such an approach would require additional data
structures and processing steps for tracking multiple fingertips over time.

It may also be the case that current approaches to camera-based virtual
keyboards appear unpromising because we are implicitly comparing their per-
formance with the standard physical keyboard interface. One might instead
try to characterize what typing tasks users currently perform on their touch-
screens and then examine whether those tasks can be performed effectively with
a virtual keyboard.

11The author is in the graduate mathematics program and has no background in computer
vision.
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